/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "induction_var_range.h" #include namespace art { /** Returns true if 64-bit constant fits in 32-bit constant. */ static bool CanLongValueFitIntoInt(int64_t c) { return std::numeric_limits::min() <= c && c <= std::numeric_limits::max(); } /** Returns true if 32-bit addition can be done safely. */ static bool IsSafeAdd(int32_t c1, int32_t c2) { return CanLongValueFitIntoInt(static_cast(c1) + static_cast(c2)); } /** Returns true if 32-bit subtraction can be done safely. */ static bool IsSafeSub(int32_t c1, int32_t c2) { return CanLongValueFitIntoInt(static_cast(c1) - static_cast(c2)); } /** Returns true if 32-bit multiplication can be done safely. */ static bool IsSafeMul(int32_t c1, int32_t c2) { return CanLongValueFitIntoInt(static_cast(c1) * static_cast(c2)); } /** Returns true if 32-bit division can be done safely. */ static bool IsSafeDiv(int32_t c1, int32_t c2) { return c2 != 0 && CanLongValueFitIntoInt(static_cast(c1) / static_cast(c2)); } /** Computes a * b for a,b > 0 (at least until first overflow happens). */ static int64_t SafeMul(int64_t a, int64_t b, /*out*/ bool* overflow) { if (a > 0 && b > 0 && a > (std::numeric_limits::max() / b)) { *overflow = true; } return a * b; } /** Returns b^e for b,e > 0. Sets overflow if arithmetic wrap-around occurred. */ static int64_t IntPow(int64_t b, int64_t e, /*out*/ bool* overflow) { DCHECK_LT(0, b); DCHECK_LT(0, e); int64_t pow = 1; while (e) { if (e & 1) { pow = SafeMul(pow, b, overflow); } e >>= 1; if (e) { b = SafeMul(b, b, overflow); } } return pow; } /** * Detects an instruction that is >= 0. As long as the value is carried by * a single instruction, arithmetic wrap-around cannot occur. */ static bool IsGEZero(HInstruction* instruction) { DCHECK(instruction != nullptr); if (instruction->IsArrayLength()) { return true; } else if (instruction->IsMin()) { // Instruction MIN(>=0, >=0) is >= 0. return IsGEZero(instruction->InputAt(0)) && IsGEZero(instruction->InputAt(1)); } else if (instruction->IsAbs()) { // Instruction ABS(>=0) is >= 0. // NOTE: ABS(minint) = minint prevents assuming // >= 0 without looking at the argument. return IsGEZero(instruction->InputAt(0)); } int64_t value = -1; return IsInt64AndGet(instruction, &value) && value >= 0; } /** Hunts "under the hood" for a suitable instruction at the hint. */ static bool IsMaxAtHint( HInstruction* instruction, HInstruction* hint, /*out*/HInstruction** suitable) { if (instruction->IsMin()) { // For MIN(x, y), return most suitable x or y as maximum. return IsMaxAtHint(instruction->InputAt(0), hint, suitable) || IsMaxAtHint(instruction->InputAt(1), hint, suitable); } else { *suitable = instruction; return HuntForDeclaration(instruction) == hint; } } /** Post-analysis simplification of a minimum value that makes the bound more useful to clients. */ static InductionVarRange::Value SimplifyMin(InductionVarRange::Value v) { if (v.is_known && v.a_constant == 1 && v.b_constant <= 0) { // If a == 1, instruction >= 0 and b <= 0, just return the constant b. // No arithmetic wrap-around can occur. if (IsGEZero(v.instruction)) { return InductionVarRange::Value(v.b_constant); } } return v; } /** Post-analysis simplification of a maximum value that makes the bound more useful to clients. */ static InductionVarRange::Value SimplifyMax(InductionVarRange::Value v, HInstruction* hint) { if (v.is_known && v.a_constant >= 1) { // An upper bound a * (length / a) + b, where a >= 1, can be conservatively rewritten as // length + b because length >= 0 is true. int64_t value; if (v.instruction->IsDiv() && v.instruction->InputAt(0)->IsArrayLength() && IsInt64AndGet(v.instruction->InputAt(1), &value) && v.a_constant == value) { return InductionVarRange::Value(v.instruction->InputAt(0), 1, v.b_constant); } // If a == 1, the most suitable one suffices as maximum value. HInstruction* suitable = nullptr; if (v.a_constant == 1 && IsMaxAtHint(v.instruction, hint, &suitable)) { return InductionVarRange::Value(suitable, 1, v.b_constant); } } return v; } /** Tests for a constant value. */ static bool IsConstantValue(InductionVarRange::Value v) { return v.is_known && v.a_constant == 0; } /** Corrects a value for type to account for arithmetic wrap-around in lower precision. */ static InductionVarRange::Value CorrectForType(InductionVarRange::Value v, DataType::Type type) { switch (type) { case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: { // Constants within range only. // TODO: maybe some room for improvement, like allowing widening conversions int32_t min = DataType::MinValueOfIntegralType(type); int32_t max = DataType::MaxValueOfIntegralType(type); return (IsConstantValue(v) && min <= v.b_constant && v.b_constant <= max) ? v : InductionVarRange::Value(); } default: return v; } } /** Inserts an instruction. */ static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) { DCHECK(block != nullptr); DCHECK(block->GetLastInstruction() != nullptr) << block->GetBlockId(); DCHECK(instruction != nullptr); block->InsertInstructionBefore(instruction, block->GetLastInstruction()); return instruction; } /** Obtains loop's control instruction. */ static HInstruction* GetLoopControl(HLoopInformation* loop) { DCHECK(loop != nullptr); return loop->GetHeader()->GetLastInstruction(); } // // Public class methods. // InductionVarRange::InductionVarRange(HInductionVarAnalysis* induction_analysis) : induction_analysis_(induction_analysis), chase_hint_(nullptr) { DCHECK(induction_analysis != nullptr); } bool InductionVarRange::GetInductionRange(HInstruction* context, HInstruction* instruction, HInstruction* chase_hint, /*out*/Value* min_val, /*out*/Value* max_val, /*out*/bool* needs_finite_test) { HLoopInformation* loop = nullptr; HInductionVarAnalysis::InductionInfo* info = nullptr; HInductionVarAnalysis::InductionInfo* trip = nullptr; if (!HasInductionInfo(context, instruction, &loop, &info, &trip)) { return false; } // Type int or lower (this is not too restrictive since intended clients, like // bounds check elimination, will have truncated higher precision induction // at their use point already). switch (info->type) { case DataType::Type::kUint8: case DataType::Type::kInt8: case DataType::Type::kUint16: case DataType::Type::kInt16: case DataType::Type::kInt32: break; default: return false; } // Find range. chase_hint_ = chase_hint; bool in_body = context->GetBlock() != loop->GetHeader(); int64_t stride_value = 0; *min_val = SimplifyMin(GetVal(info, trip, in_body, /* is_min= */ true)); *max_val = SimplifyMax(GetVal(info, trip, in_body, /* is_min= */ false), chase_hint); *needs_finite_test = NeedsTripCount(info, &stride_value) && IsUnsafeTripCount(trip); chase_hint_ = nullptr; // Retry chasing constants for wrap-around (merge sensitive). if (!min_val->is_known && info->induction_class == HInductionVarAnalysis::kWrapAround) { *min_val = SimplifyMin(GetVal(info, trip, in_body, /* is_min= */ true)); } return true; } bool InductionVarRange::CanGenerateRange(HInstruction* context, HInstruction* instruction, /*out*/bool* needs_finite_test, /*out*/bool* needs_taken_test) { bool is_last_value = false; int64_t stride_value = 0; return GenerateRangeOrLastValue(context, instruction, is_last_value, nullptr, nullptr, nullptr, nullptr, nullptr, // nothing generated yet &stride_value, needs_finite_test, needs_taken_test) && (stride_value == -1 || stride_value == 0 || stride_value == 1); // avoid arithmetic wrap-around anomalies. } void InductionVarRange::GenerateRange(HInstruction* context, HInstruction* instruction, HGraph* graph, HBasicBlock* block, /*out*/HInstruction** lower, /*out*/HInstruction** upper) { bool is_last_value = false; int64_t stride_value = 0; bool b1, b2; // unused if (!GenerateRangeOrLastValue(context, instruction, is_last_value, graph, block, lower, upper, nullptr, &stride_value, &b1, &b2)) { LOG(FATAL) << "Failed precondition: CanGenerateRange()"; } } HInstruction* InductionVarRange::GenerateTakenTest(HInstruction* context, HGraph* graph, HBasicBlock* block) { HInstruction* taken_test = nullptr; bool is_last_value = false; int64_t stride_value = 0; bool b1, b2; // unused if (!GenerateRangeOrLastValue(context, context, is_last_value, graph, block, nullptr, nullptr, &taken_test, &stride_value, &b1, &b2)) { LOG(FATAL) << "Failed precondition: CanGenerateRange()"; } return taken_test; } bool InductionVarRange::CanGenerateLastValue(HInstruction* instruction) { bool is_last_value = true; int64_t stride_value = 0; bool needs_finite_test = false; bool needs_taken_test = false; return GenerateRangeOrLastValue(instruction, instruction, is_last_value, nullptr, nullptr, nullptr, nullptr, nullptr, // nothing generated yet &stride_value, &needs_finite_test, &needs_taken_test) && !needs_finite_test && !needs_taken_test; } HInstruction* InductionVarRange::GenerateLastValue(HInstruction* instruction, HGraph* graph, HBasicBlock* block) { HInstruction* last_value = nullptr; bool is_last_value = true; int64_t stride_value = 0; bool b1, b2; // unused if (!GenerateRangeOrLastValue(instruction, instruction, is_last_value, graph, block, &last_value, &last_value, nullptr, &stride_value, &b1, &b2)) { LOG(FATAL) << "Failed precondition: CanGenerateLastValue()"; } return last_value; } void InductionVarRange::Replace(HInstruction* instruction, HInstruction* fetch, HInstruction* replacement) { for (HLoopInformation* lp = instruction->GetBlock()->GetLoopInformation(); // closest enveloping loop lp != nullptr; lp = lp->GetPreHeader()->GetLoopInformation()) { // Update instruction's information. ReplaceInduction(induction_analysis_->LookupInfo(lp, instruction), fetch, replacement); // Update loop's trip-count information. ReplaceInduction(induction_analysis_->LookupInfo(lp, GetLoopControl(lp)), fetch, replacement); } } bool InductionVarRange::IsFinite(HLoopInformation* loop, /*out*/ int64_t* trip_count) const { bool is_constant_unused = false; return CheckForFiniteAndConstantProps(loop, &is_constant_unused, trip_count); } bool InductionVarRange::HasKnownTripCount(HLoopInformation* loop, /*out*/ int64_t* trip_count) const { bool is_constant = false; CheckForFiniteAndConstantProps(loop, &is_constant, trip_count); return is_constant; } bool InductionVarRange::IsUnitStride(HInstruction* context, HInstruction* instruction, HGraph* graph, /*out*/ HInstruction** offset) const { HLoopInformation* loop = nullptr; HInductionVarAnalysis::InductionInfo* info = nullptr; HInductionVarAnalysis::InductionInfo* trip = nullptr; if (HasInductionInfo(context, instruction, &loop, &info, &trip)) { if (info->induction_class == HInductionVarAnalysis::kLinear && !HInductionVarAnalysis::IsNarrowingLinear(info)) { int64_t stride_value = 0; if (IsConstant(info->op_a, kExact, &stride_value) && stride_value == 1) { int64_t off_value = 0; if (IsConstant(info->op_b, kExact, &off_value)) { *offset = graph->GetConstant(info->op_b->type, off_value); } else if (info->op_b->operation == HInductionVarAnalysis::kFetch) { *offset = info->op_b->fetch; } else { return false; } return true; } } } return false; } HInstruction* InductionVarRange::GenerateTripCount(HLoopInformation* loop, HGraph* graph, HBasicBlock* block) { HInductionVarAnalysis::InductionInfo *trip = induction_analysis_->LookupInfo(loop, GetLoopControl(loop)); if (trip != nullptr && !IsUnsafeTripCount(trip)) { HInstruction* taken_test = nullptr; HInstruction* trip_expr = nullptr; if (IsBodyTripCount(trip)) { if (!GenerateCode(trip->op_b, nullptr, graph, block, &taken_test, false, false)) { return nullptr; } } if (GenerateCode(trip->op_a, nullptr, graph, block, &trip_expr, false, false)) { if (taken_test != nullptr) { HInstruction* zero = graph->GetConstant(trip->type, 0); ArenaAllocator* allocator = graph->GetAllocator(); trip_expr = Insert(block, new (allocator) HSelect(taken_test, trip_expr, zero, kNoDexPc)); } return trip_expr; } } return nullptr; } // // Private class methods. // bool InductionVarRange::CheckForFiniteAndConstantProps(HLoopInformation* loop, /*out*/ bool* is_constant, /*out*/ int64_t* trip_count) const { HInductionVarAnalysis::InductionInfo *trip = induction_analysis_->LookupInfo(loop, GetLoopControl(loop)); if (trip != nullptr && !IsUnsafeTripCount(trip)) { *is_constant = IsConstant(trip->op_a, kExact, trip_count); return true; } return false; } bool InductionVarRange::IsConstant(HInductionVarAnalysis::InductionInfo* info, ConstantRequest request, /*out*/ int64_t* value) const { if (info != nullptr) { // A direct 32-bit or 64-bit constant fetch. This immediately satisfies // any of the three requests (kExact, kAtMost, and KAtLeast). if (info->induction_class == HInductionVarAnalysis::kInvariant && info->operation == HInductionVarAnalysis::kFetch) { if (IsInt64AndGet(info->fetch, value)) { return true; } } // Try range analysis on the invariant, only accept a proper range // to avoid arithmetic wrap-around anomalies. Value min_val = GetVal(info, nullptr, /* in_body= */ true, /* is_min= */ true); Value max_val = GetVal(info, nullptr, /* in_body= */ true, /* is_min= */ false); if (IsConstantValue(min_val) && IsConstantValue(max_val) && min_val.b_constant <= max_val.b_constant) { if ((request == kExact && min_val.b_constant == max_val.b_constant) || request == kAtMost) { *value = max_val.b_constant; return true; } else if (request == kAtLeast) { *value = min_val.b_constant; return true; } } } return false; } bool InductionVarRange::HasInductionInfo( HInstruction* context, HInstruction* instruction, /*out*/ HLoopInformation** loop, /*out*/ HInductionVarAnalysis::InductionInfo** info, /*out*/ HInductionVarAnalysis::InductionInfo** trip) const { DCHECK(context != nullptr); DCHECK(context->GetBlock() != nullptr); HLoopInformation* lp = context->GetBlock()->GetLoopInformation(); // closest enveloping loop if (lp != nullptr) { HInductionVarAnalysis::InductionInfo* i = induction_analysis_->LookupInfo(lp, instruction); if (i != nullptr) { *loop = lp; *info = i; *trip = induction_analysis_->LookupInfo(lp, GetLoopControl(lp)); return true; } } return false; } bool InductionVarRange::IsWellBehavedTripCount(HInductionVarAnalysis::InductionInfo* trip) const { if (trip != nullptr) { // Both bounds that define a trip-count are well-behaved if they either are not defined // in any loop, or are contained in a proper interval. This allows finding the min/max // of an expression by chasing outward. InductionVarRange range(induction_analysis_); HInductionVarAnalysis::InductionInfo* lower = trip->op_b->op_a; HInductionVarAnalysis::InductionInfo* upper = trip->op_b->op_b; int64_t not_used = 0; return (!HasFetchInLoop(lower) || range.IsConstant(lower, kAtLeast, ¬_used)) && (!HasFetchInLoop(upper) || range.IsConstant(upper, kAtLeast, ¬_used)); } return true; } bool InductionVarRange::HasFetchInLoop(HInductionVarAnalysis::InductionInfo* info) const { if (info != nullptr) { if (info->induction_class == HInductionVarAnalysis::kInvariant && info->operation == HInductionVarAnalysis::kFetch) { return info->fetch->GetBlock()->GetLoopInformation() != nullptr; } return HasFetchInLoop(info->op_a) || HasFetchInLoop(info->op_b); } return false; } bool InductionVarRange::NeedsTripCount(HInductionVarAnalysis::InductionInfo* info, int64_t* stride_value) const { if (info != nullptr) { if (info->induction_class == HInductionVarAnalysis::kLinear) { return IsConstant(info->op_a, kExact, stride_value); } else if (info->induction_class == HInductionVarAnalysis::kPolynomial) { return NeedsTripCount(info->op_a, stride_value); } else if (info->induction_class == HInductionVarAnalysis::kWrapAround) { return NeedsTripCount(info->op_b, stride_value); } } return false; } bool InductionVarRange::IsBodyTripCount(HInductionVarAnalysis::InductionInfo* trip) const { if (trip != nullptr) { if (trip->induction_class == HInductionVarAnalysis::kInvariant) { return trip->operation == HInductionVarAnalysis::kTripCountInBody || trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe; } } return false; } bool InductionVarRange::IsUnsafeTripCount(HInductionVarAnalysis::InductionInfo* trip) const { if (trip != nullptr) { if (trip->induction_class == HInductionVarAnalysis::kInvariant) { return trip->operation == HInductionVarAnalysis::kTripCountInBodyUnsafe || trip->operation == HInductionVarAnalysis::kTripCountInLoopUnsafe; } } return false; } InductionVarRange::Value InductionVarRange::GetLinear(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min) const { DCHECK(info != nullptr); DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kLinear); // Detect common situation where an offset inside the trip-count cancels out during range // analysis (finding max a * (TC - 1) + OFFSET for a == 1 and TC = UPPER - OFFSET or finding // min a * (TC - 1) + OFFSET for a == -1 and TC = OFFSET - UPPER) to avoid losing information // with intermediate results that only incorporate single instructions. if (trip != nullptr) { HInductionVarAnalysis::InductionInfo* trip_expr = trip->op_a; if (trip_expr->type == info->type && trip_expr->operation == HInductionVarAnalysis::kSub) { int64_t stride_value = 0; if (IsConstant(info->op_a, kExact, &stride_value)) { if (!is_min && stride_value == 1) { // Test original trip's negative operand (trip_expr->op_b) against offset of induction. if (HInductionVarAnalysis::InductionEqual(trip_expr->op_b, info->op_b)) { // Analyze cancelled trip with just the positive operand (trip_expr->op_a). HInductionVarAnalysis::InductionInfo cancelled_trip( trip->induction_class, trip->operation, trip_expr->op_a, trip->op_b, nullptr, trip->type); return GetVal(&cancelled_trip, trip, in_body, is_min); } } else if (is_min && stride_value == -1) { // Test original trip's positive operand (trip_expr->op_a) against offset of induction. if (HInductionVarAnalysis::InductionEqual(trip_expr->op_a, info->op_b)) { // Analyze cancelled trip with just the negative operand (trip_expr->op_b). HInductionVarAnalysis::InductionInfo neg( HInductionVarAnalysis::kInvariant, HInductionVarAnalysis::kNeg, nullptr, trip_expr->op_b, nullptr, trip->type); HInductionVarAnalysis::InductionInfo cancelled_trip( trip->induction_class, trip->operation, &neg, trip->op_b, nullptr, trip->type); return SubValue(Value(0), GetVal(&cancelled_trip, trip, in_body, !is_min)); } } } } } // General rule of linear induction a * i + b, for normalized 0 <= i < TC. return AddValue(GetMul(info->op_a, trip, trip, in_body, is_min), GetVal(info->op_b, trip, in_body, is_min)); } InductionVarRange::Value InductionVarRange::GetPolynomial(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min) const { DCHECK(info != nullptr); DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial); int64_t a = 0; int64_t b = 0; if (IsConstant(info->op_a->op_a, kExact, &a) && CanLongValueFitIntoInt(a) && a >= 0 && IsConstant(info->op_a->op_b, kExact, &b) && CanLongValueFitIntoInt(b) && b >= 0) { // Evaluate bounds on sum_i=0^m-1(a * i + b) + c with a,b >= 0 for // maximum index value m as a * (m * (m-1)) / 2 + b * m + c. Value c = GetVal(info->op_b, trip, in_body, is_min); if (is_min) { return c; } else { Value m = GetVal(trip, trip, in_body, is_min); Value t = DivValue(MulValue(m, SubValue(m, Value(1))), Value(2)); Value x = MulValue(Value(a), t); Value y = MulValue(Value(b), m); return AddValue(AddValue(x, y), c); } } return Value(); } InductionVarRange::Value InductionVarRange::GetGeometric(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min) const { DCHECK(info != nullptr); DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric); int64_t a = 0; int64_t f = 0; if (IsConstant(info->op_a, kExact, &a) && CanLongValueFitIntoInt(a) && IsInt64AndGet(info->fetch, &f) && f >= 1) { // Conservative bounds on a * f^-i + b with f >= 1 can be computed without // trip count. Other forms would require a much more elaborate evaluation. const bool is_min_a = a >= 0 ? is_min : !is_min; if (info->operation == HInductionVarAnalysis::kDiv) { Value b = GetVal(info->op_b, trip, in_body, is_min); return is_min_a ? b : AddValue(Value(a), b); } } return Value(); } InductionVarRange::Value InductionVarRange::GetFetch(HInstruction* instruction, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min) const { // Special case when chasing constants: single instruction that denotes trip count in the // loop-body is minimal 1 and maximal, with safe trip-count, max int, if (chase_hint_ == nullptr && in_body && trip != nullptr && instruction == trip->op_a->fetch) { if (is_min) { return Value(1); } else if (!instruction->IsConstant() && !IsUnsafeTripCount(trip)) { return Value(std::numeric_limits::max()); } } // Unless at a constant or hint, chase the instruction a bit deeper into the HIR tree, so that // it becomes more likely range analysis will compare the same instructions as terminal nodes. int64_t value; if (IsInt64AndGet(instruction, &value) && CanLongValueFitIntoInt(value)) { // Proper constant reveals best information. return Value(static_cast(value)); } else if (instruction == chase_hint_) { // At hint, fetch is represented by itself. return Value(instruction, 1, 0); } else if (instruction->IsAdd()) { // Incorporate suitable constants in the chased value. if (IsInt64AndGet(instruction->InputAt(0), &value) && CanLongValueFitIntoInt(value)) { return AddValue(Value(static_cast(value)), GetFetch(instruction->InputAt(1), trip, in_body, is_min)); } else if (IsInt64AndGet(instruction->InputAt(1), &value) && CanLongValueFitIntoInt(value)) { return AddValue(GetFetch(instruction->InputAt(0), trip, in_body, is_min), Value(static_cast(value))); } } else if (instruction->IsSub()) { // Incorporate suitable constants in the chased value. if (IsInt64AndGet(instruction->InputAt(0), &value) && CanLongValueFitIntoInt(value)) { return SubValue(Value(static_cast(value)), GetFetch(instruction->InputAt(1), trip, in_body, !is_min)); } else if (IsInt64AndGet(instruction->InputAt(1), &value) && CanLongValueFitIntoInt(value)) { return SubValue(GetFetch(instruction->InputAt(0), trip, in_body, is_min), Value(static_cast(value))); } } else if (instruction->IsArrayLength()) { // Exploit length properties when chasing constants or chase into a new array declaration. if (chase_hint_ == nullptr) { return is_min ? Value(0) : Value(std::numeric_limits::max()); } else if (instruction->InputAt(0)->IsNewArray()) { return GetFetch(instruction->InputAt(0)->AsNewArray()->GetLength(), trip, in_body, is_min); } } else if (instruction->IsTypeConversion()) { // Since analysis is 32-bit (or narrower), chase beyond widening along the path. // For example, this discovers the length in: for (long i = 0; i < a.length; i++); if (instruction->AsTypeConversion()->GetInputType() == DataType::Type::kInt32 && instruction->AsTypeConversion()->GetResultType() == DataType::Type::kInt64) { return GetFetch(instruction->InputAt(0), trip, in_body, is_min); } } // Chase an invariant fetch that is defined by an outer loop if the trip-count used // so far is well-behaved in both bounds and the next trip-count is safe. // Example: // for (int i = 0; i <= 100; i++) // safe // for (int j = 0; j <= i; j++) // well-behaved // j is in range [0, i ] (if i is chase hint) // or in range [0, 100] (otherwise) HLoopInformation* next_loop = nullptr; HInductionVarAnalysis::InductionInfo* next_info = nullptr; HInductionVarAnalysis::InductionInfo* next_trip = nullptr; bool next_in_body = true; // inner loop is always in body of outer loop if (HasInductionInfo(instruction, instruction, &next_loop, &next_info, &next_trip) && IsWellBehavedTripCount(trip) && !IsUnsafeTripCount(next_trip)) { return GetVal(next_info, next_trip, next_in_body, is_min); } // Fetch is represented by itself. return Value(instruction, 1, 0); } InductionVarRange::Value InductionVarRange::GetVal(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min) const { if (info != nullptr) { switch (info->induction_class) { case HInductionVarAnalysis::kInvariant: // Invariants. switch (info->operation) { case HInductionVarAnalysis::kAdd: return AddValue(GetVal(info->op_a, trip, in_body, is_min), GetVal(info->op_b, trip, in_body, is_min)); case HInductionVarAnalysis::kSub: // second reversed! return SubValue(GetVal(info->op_a, trip, in_body, is_min), GetVal(info->op_b, trip, in_body, !is_min)); case HInductionVarAnalysis::kNeg: // second reversed! return SubValue(Value(0), GetVal(info->op_b, trip, in_body, !is_min)); case HInductionVarAnalysis::kMul: return GetMul(info->op_a, info->op_b, trip, in_body, is_min); case HInductionVarAnalysis::kDiv: return GetDiv(info->op_a, info->op_b, trip, in_body, is_min); case HInductionVarAnalysis::kRem: return GetRem(info->op_a, info->op_b); case HInductionVarAnalysis::kXor: return GetXor(info->op_a, info->op_b); case HInductionVarAnalysis::kFetch: return GetFetch(info->fetch, trip, in_body, is_min); case HInductionVarAnalysis::kTripCountInLoop: case HInductionVarAnalysis::kTripCountInLoopUnsafe: if (!in_body && !is_min) { // one extra! return GetVal(info->op_a, trip, in_body, is_min); } FALLTHROUGH_INTENDED; case HInductionVarAnalysis::kTripCountInBody: case HInductionVarAnalysis::kTripCountInBodyUnsafe: if (is_min) { return Value(0); } else if (in_body) { return SubValue(GetVal(info->op_a, trip, in_body, is_min), Value(1)); } break; default: break; } break; case HInductionVarAnalysis::kLinear: return CorrectForType(GetLinear(info, trip, in_body, is_min), info->type); case HInductionVarAnalysis::kPolynomial: return GetPolynomial(info, trip, in_body, is_min); case HInductionVarAnalysis::kGeometric: return GetGeometric(info, trip, in_body, is_min); case HInductionVarAnalysis::kWrapAround: case HInductionVarAnalysis::kPeriodic: return MergeVal(GetVal(info->op_a, trip, in_body, is_min), GetVal(info->op_b, trip, in_body, is_min), is_min); } } return Value(); } InductionVarRange::Value InductionVarRange::GetMul(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min) const { // Constant times range. int64_t value = 0; if (IsConstant(info1, kExact, &value)) { return MulRangeAndConstant(value, info2, trip, in_body, is_min); } else if (IsConstant(info2, kExact, &value)) { return MulRangeAndConstant(value, info1, trip, in_body, is_min); } // Interval ranges. Value v1_min = GetVal(info1, trip, in_body, /* is_min= */ true); Value v1_max = GetVal(info1, trip, in_body, /* is_min= */ false); Value v2_min = GetVal(info2, trip, in_body, /* is_min= */ true); Value v2_max = GetVal(info2, trip, in_body, /* is_min= */ false); // Positive range vs. positive or negative range. if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) { if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) { return is_min ? MulValue(v1_min, v2_min) : MulValue(v1_max, v2_max); } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) { return is_min ? MulValue(v1_max, v2_min) : MulValue(v1_min, v2_max); } } // Negative range vs. positive or negative range. if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) { if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) { return is_min ? MulValue(v1_min, v2_max) : MulValue(v1_max, v2_min); } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) { return is_min ? MulValue(v1_max, v2_max) : MulValue(v1_min, v2_min); } } return Value(); } InductionVarRange::Value InductionVarRange::GetDiv(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min) const { // Range divided by constant. int64_t value = 0; if (IsConstant(info2, kExact, &value)) { return DivRangeAndConstant(value, info1, trip, in_body, is_min); } // Interval ranges. Value v1_min = GetVal(info1, trip, in_body, /* is_min= */ true); Value v1_max = GetVal(info1, trip, in_body, /* is_min= */ false); Value v2_min = GetVal(info2, trip, in_body, /* is_min= */ true); Value v2_max = GetVal(info2, trip, in_body, /* is_min= */ false); // Positive range vs. positive or negative range. if (IsConstantValue(v1_min) && v1_min.b_constant >= 0) { if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) { return is_min ? DivValue(v1_min, v2_max) : DivValue(v1_max, v2_min); } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) { return is_min ? DivValue(v1_max, v2_max) : DivValue(v1_min, v2_min); } } // Negative range vs. positive or negative range. if (IsConstantValue(v1_max) && v1_max.b_constant <= 0) { if (IsConstantValue(v2_min) && v2_min.b_constant >= 0) { return is_min ? DivValue(v1_min, v2_min) : DivValue(v1_max, v2_max); } else if (IsConstantValue(v2_max) && v2_max.b_constant <= 0) { return is_min ? DivValue(v1_max, v2_min) : DivValue(v1_min, v2_max); } } return Value(); } InductionVarRange::Value InductionVarRange::GetRem( HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2) const { int64_t v1 = 0; int64_t v2 = 0; // Only accept exact values. if (IsConstant(info1, kExact, &v1) && IsConstant(info2, kExact, &v2) && v2 != 0) { int64_t value = v1 % v2; if (CanLongValueFitIntoInt(value)) { return Value(static_cast(value)); } } return Value(); } InductionVarRange::Value InductionVarRange::GetXor( HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2) const { int64_t v1 = 0; int64_t v2 = 0; // Only accept exact values. if (IsConstant(info1, kExact, &v1) && IsConstant(info2, kExact, &v2)) { int64_t value = v1 ^ v2; if (CanLongValueFitIntoInt(value)) { return Value(static_cast(value)); } } return Value(); } InductionVarRange::Value InductionVarRange::MulRangeAndConstant( int64_t value, HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min) const { if (CanLongValueFitIntoInt(value)) { Value c(static_cast(value)); return MulValue(GetVal(info, trip, in_body, is_min == value >= 0), c); } return Value(); } InductionVarRange::Value InductionVarRange::DivRangeAndConstant( int64_t value, HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min) const { if (CanLongValueFitIntoInt(value)) { Value c(static_cast(value)); return DivValue(GetVal(info, trip, in_body, is_min == value >= 0), c); } return Value(); } InductionVarRange::Value InductionVarRange::AddValue(Value v1, Value v2) const { if (v1.is_known && v2.is_known && IsSafeAdd(v1.b_constant, v2.b_constant)) { int32_t b = v1.b_constant + v2.b_constant; if (v1.a_constant == 0) { return Value(v2.instruction, v2.a_constant, b); } else if (v2.a_constant == 0) { return Value(v1.instruction, v1.a_constant, b); } else if (v1.instruction == v2.instruction && IsSafeAdd(v1.a_constant, v2.a_constant)) { return Value(v1.instruction, v1.a_constant + v2.a_constant, b); } } return Value(); } InductionVarRange::Value InductionVarRange::SubValue(Value v1, Value v2) const { if (v1.is_known && v2.is_known && IsSafeSub(v1.b_constant, v2.b_constant)) { int32_t b = v1.b_constant - v2.b_constant; if (v1.a_constant == 0 && IsSafeSub(0, v2.a_constant)) { return Value(v2.instruction, -v2.a_constant, b); } else if (v2.a_constant == 0) { return Value(v1.instruction, v1.a_constant, b); } else if (v1.instruction == v2.instruction && IsSafeSub(v1.a_constant, v2.a_constant)) { return Value(v1.instruction, v1.a_constant - v2.a_constant, b); } } return Value(); } InductionVarRange::Value InductionVarRange::MulValue(Value v1, Value v2) const { if (v1.is_known && v2.is_known) { if (v1.a_constant == 0) { if (IsSafeMul(v1.b_constant, v2.a_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) { return Value(v2.instruction, v1.b_constant * v2.a_constant, v1.b_constant * v2.b_constant); } } else if (v2.a_constant == 0) { if (IsSafeMul(v1.a_constant, v2.b_constant) && IsSafeMul(v1.b_constant, v2.b_constant)) { return Value(v1.instruction, v1.a_constant * v2.b_constant, v1.b_constant * v2.b_constant); } } } return Value(); } InductionVarRange::Value InductionVarRange::DivValue(Value v1, Value v2) const { if (v1.is_known && v2.is_known && v1.a_constant == 0 && v2.a_constant == 0) { if (IsSafeDiv(v1.b_constant, v2.b_constant)) { return Value(v1.b_constant / v2.b_constant); } } return Value(); } InductionVarRange::Value InductionVarRange::MergeVal(Value v1, Value v2, bool is_min) const { if (v1.is_known && v2.is_known) { if (v1.instruction == v2.instruction && v1.a_constant == v2.a_constant) { return Value(v1.instruction, v1.a_constant, is_min ? std::min(v1.b_constant, v2.b_constant) : std::max(v1.b_constant, v2.b_constant)); } } return Value(); } bool InductionVarRange::GenerateRangeOrLastValue(HInstruction* context, HInstruction* instruction, bool is_last_value, HGraph* graph, HBasicBlock* block, /*out*/HInstruction** lower, /*out*/HInstruction** upper, /*out*/HInstruction** taken_test, /*out*/int64_t* stride_value, /*out*/bool* needs_finite_test, /*out*/bool* needs_taken_test) const { HLoopInformation* loop = nullptr; HInductionVarAnalysis::InductionInfo* info = nullptr; HInductionVarAnalysis::InductionInfo* trip = nullptr; if (!HasInductionInfo(context, instruction, &loop, &info, &trip) || trip == nullptr) { return false; // codegen needs all information, including tripcount } // Determine what tests are needed. A finite test is needed if the evaluation code uses the // trip-count and the loop maybe unsafe (because in such cases, the index could "overshoot" // the computed range). A taken test is needed for any unknown trip-count, even if evaluation // code does not use the trip-count explicitly (since there could be an implicit relation // between e.g. an invariant subscript and a not-taken condition). bool in_body = context->GetBlock() != loop->GetHeader(); *stride_value = 0; *needs_finite_test = NeedsTripCount(info, stride_value) && IsUnsafeTripCount(trip); *needs_taken_test = IsBodyTripCount(trip); // Handle last value request. if (is_last_value) { DCHECK(!in_body); switch (info->induction_class) { case HInductionVarAnalysis::kLinear: if (*stride_value > 0) { lower = nullptr; } else { upper = nullptr; } break; case HInductionVarAnalysis::kPolynomial: return GenerateLastValuePolynomial(info, trip, graph, block, lower); case HInductionVarAnalysis::kGeometric: return GenerateLastValueGeometric(info, trip, graph, block, lower); case HInductionVarAnalysis::kWrapAround: return GenerateLastValueWrapAround(info, trip, graph, block, lower); case HInductionVarAnalysis::kPeriodic: return GenerateLastValuePeriodic(info, trip, graph, block, lower, needs_taken_test); default: return false; } } // Code generation for taken test: generate the code when requested or otherwise analyze // if code generation is feasible when taken test is needed. if (taken_test != nullptr) { return GenerateCode(trip->op_b, nullptr, graph, block, taken_test, in_body, /* is_min= */ false); } else if (*needs_taken_test) { if (!GenerateCode( trip->op_b, nullptr, nullptr, nullptr, nullptr, in_body, /* is_min= */ false)) { return false; } } // Code generation for lower and upper. return // Success on lower if invariant (not set), or code can be generated. ((info->induction_class == HInductionVarAnalysis::kInvariant) || GenerateCode(info, trip, graph, block, lower, in_body, /* is_min= */ true)) && // And success on upper. GenerateCode(info, trip, graph, block, upper, in_body, /* is_min= */ false); } bool InductionVarRange::GenerateLastValuePolynomial(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, HGraph* graph, HBasicBlock* block, /*out*/HInstruction** result) const { DCHECK(info != nullptr); DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPolynomial); // Detect known coefficients and trip count (always taken). int64_t a = 0; int64_t b = 0; int64_t m = 0; if (IsConstant(info->op_a->op_a, kExact, &a) && IsConstant(info->op_a->op_b, kExact, &b) && IsConstant(trip->op_a, kExact, &m) && m >= 1) { // Evaluate bounds on sum_i=0^m-1(a * i + b) + c for known // maximum index value m as a * (m * (m-1)) / 2 + b * m + c. HInstruction* c = nullptr; if (GenerateCode(info->op_b, nullptr, graph, block, graph ? &c : nullptr, false, false)) { if (graph != nullptr) { DataType::Type type = info->type; int64_t sum = a * ((m * (m - 1)) / 2) + b * m; if (type != DataType::Type::kInt64) { sum = static_cast(sum); // okay to truncate } *result = Insert(block, new (graph->GetAllocator()) HAdd(type, graph->GetConstant(type, sum), c)); } return true; } } return false; } bool InductionVarRange::GenerateLastValueGeometric(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, HGraph* graph, HBasicBlock* block, /*out*/HInstruction** result) const { DCHECK(info != nullptr); DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kGeometric); // Detect known base and trip count (always taken). int64_t f = 0; int64_t m = 0; if (IsInt64AndGet(info->fetch, &f) && f >= 1 && IsConstant(trip->op_a, kExact, &m) && m >= 1) { HInstruction* opa = nullptr; HInstruction* opb = nullptr; if (GenerateCode(info->op_a, nullptr, graph, block, &opa, false, false) && GenerateCode(info->op_b, nullptr, graph, block, &opb, false, false)) { if (graph != nullptr) { DataType::Type type = info->type; // Compute f ^ m for known maximum index value m. bool overflow = false; int64_t fpow = IntPow(f, m, &overflow); if (info->operation == HInductionVarAnalysis::kDiv) { // For division, any overflow truncates to zero. if (overflow || (type != DataType::Type::kInt64 && !CanLongValueFitIntoInt(fpow))) { fpow = 0; } } else if (type != DataType::Type::kInt64) { // For multiplication, okay to truncate to required precision. DCHECK(info->operation == HInductionVarAnalysis::kMul); fpow = static_cast(fpow); } // Generate code. if (fpow == 0) { // Special case: repeated mul/div always yields zero. *result = graph->GetConstant(type, 0); } else { // Last value: a * f ^ m + b or a * f ^ -m + b. HInstruction* e = nullptr; ArenaAllocator* allocator = graph->GetAllocator(); if (info->operation == HInductionVarAnalysis::kMul) { e = new (allocator) HMul(type, opa, graph->GetConstant(type, fpow)); } else { e = new (allocator) HDiv(type, opa, graph->GetConstant(type, fpow), kNoDexPc); } *result = Insert(block, new (allocator) HAdd(type, Insert(block, e), opb)); } } return true; } } return false; } bool InductionVarRange::GenerateLastValueWrapAround(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, HGraph* graph, HBasicBlock* block, /*out*/HInstruction** result) const { DCHECK(info != nullptr); DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kWrapAround); // Count depth. int32_t depth = 0; for (; info->induction_class == HInductionVarAnalysis::kWrapAround; info = info->op_b, ++depth) {} // Handle wrap(x, wrap(.., y)) if trip count reaches an invariant at end. // TODO: generalize, but be careful to adjust the terminal. int64_t m = 0; if (info->induction_class == HInductionVarAnalysis::kInvariant && IsConstant(trip->op_a, kExact, &m) && m >= depth) { return GenerateCode(info, nullptr, graph, block, result, false, false); } return false; } bool InductionVarRange::GenerateLastValuePeriodic(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, HGraph* graph, HBasicBlock* block, /*out*/HInstruction** result, /*out*/bool* needs_taken_test) const { DCHECK(info != nullptr); DCHECK_EQ(info->induction_class, HInductionVarAnalysis::kPeriodic); // Count period and detect all-invariants. int64_t period = 1; bool all_invariants = true; HInductionVarAnalysis::InductionInfo* p = info; for (; p->induction_class == HInductionVarAnalysis::kPeriodic; p = p->op_b, ++period) { DCHECK_EQ(p->op_a->induction_class, HInductionVarAnalysis::kInvariant); if (p->op_a->operation != HInductionVarAnalysis::kFetch) { all_invariants = false; } } DCHECK_EQ(p->induction_class, HInductionVarAnalysis::kInvariant); if (p->operation != HInductionVarAnalysis::kFetch) { all_invariants = false; } // Don't rely on FP arithmetic to be precise, unless the full period // consist of pre-computed expressions only. if (info->type == DataType::Type::kFloat32 || info->type == DataType::Type::kFloat64) { if (!all_invariants) { return false; } } // Handle any periodic(x, periodic(.., y)) for known maximum index value m. int64_t m = 0; if (IsConstant(trip->op_a, kExact, &m) && m >= 1) { int64_t li = m % period; for (int64_t i = 0; i < li; info = info->op_b, i++) {} if (info->induction_class == HInductionVarAnalysis::kPeriodic) { info = info->op_a; } return GenerateCode(info, nullptr, graph, block, result, false, false); } // Handle periodic(x, y) using even/odd-select on trip count. Enter trip count expression // directly to obtain the maximum index value t even if taken test is needed. HInstruction* x = nullptr; HInstruction* y = nullptr; HInstruction* t = nullptr; if (period == 2 && GenerateCode(info->op_a, nullptr, graph, block, graph ? &x : nullptr, false, false) && GenerateCode(info->op_b, nullptr, graph, block, graph ? &y : nullptr, false, false) && GenerateCode(trip->op_a, nullptr, graph, block, graph ? &t : nullptr, false, false)) { // During actual code generation (graph != nullptr), generate is_even ? x : y. if (graph != nullptr) { DataType::Type type = trip->type; ArenaAllocator* allocator = graph->GetAllocator(); HInstruction* msk = Insert(block, new (allocator) HAnd(type, t, graph->GetConstant(type, 1))); HInstruction* is_even = Insert(block, new (allocator) HEqual(msk, graph->GetConstant(type, 0), kNoDexPc)); *result = Insert(block, new (graph->GetAllocator()) HSelect(is_even, x, y, kNoDexPc)); } // Guard select with taken test if needed. if (*needs_taken_test) { HInstruction* is_taken = nullptr; if (GenerateCode(trip->op_b, nullptr, graph, block, graph ? &is_taken : nullptr, false, false)) { if (graph != nullptr) { ArenaAllocator* allocator = graph->GetAllocator(); *result = Insert(block, new (allocator) HSelect(is_taken, *result, x, kNoDexPc)); } *needs_taken_test = false; // taken care of } else { return false; } } return true; } return false; } bool InductionVarRange::GenerateCode(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, HGraph* graph, // when set, code is generated HBasicBlock* block, /*out*/HInstruction** result, bool in_body, bool is_min) const { if (info != nullptr) { // If during codegen, the result is not needed (nullptr), simply return success. if (graph != nullptr && result == nullptr) { return true; } // Handle current operation. DataType::Type type = info->type; HInstruction* opa = nullptr; HInstruction* opb = nullptr; switch (info->induction_class) { case HInductionVarAnalysis::kInvariant: // Invariants (note that since invariants only have other invariants as // sub expressions, viz. no induction, there is no need to adjust is_min). switch (info->operation) { case HInductionVarAnalysis::kAdd: case HInductionVarAnalysis::kSub: case HInductionVarAnalysis::kMul: case HInductionVarAnalysis::kDiv: case HInductionVarAnalysis::kRem: case HInductionVarAnalysis::kXor: case HInductionVarAnalysis::kLT: case HInductionVarAnalysis::kLE: case HInductionVarAnalysis::kGT: case HInductionVarAnalysis::kGE: if (GenerateCode(info->op_a, trip, graph, block, &opa, in_body, is_min) && GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) { if (graph != nullptr) { HInstruction* operation = nullptr; switch (info->operation) { case HInductionVarAnalysis::kAdd: operation = new (graph->GetAllocator()) HAdd(type, opa, opb); break; case HInductionVarAnalysis::kSub: operation = new (graph->GetAllocator()) HSub(type, opa, opb); break; case HInductionVarAnalysis::kMul: operation = new (graph->GetAllocator()) HMul(type, opa, opb, kNoDexPc); break; case HInductionVarAnalysis::kDiv: operation = new (graph->GetAllocator()) HDiv(type, opa, opb, kNoDexPc); break; case HInductionVarAnalysis::kRem: operation = new (graph->GetAllocator()) HRem(type, opa, opb, kNoDexPc); break; case HInductionVarAnalysis::kXor: operation = new (graph->GetAllocator()) HXor(type, opa, opb); break; case HInductionVarAnalysis::kLT: operation = new (graph->GetAllocator()) HLessThan(opa, opb); break; case HInductionVarAnalysis::kLE: operation = new (graph->GetAllocator()) HLessThanOrEqual(opa, opb); break; case HInductionVarAnalysis::kGT: operation = new (graph->GetAllocator()) HGreaterThan(opa, opb); break; case HInductionVarAnalysis::kGE: operation = new (graph->GetAllocator()) HGreaterThanOrEqual(opa, opb); break; default: LOG(FATAL) << "unknown operation"; } *result = Insert(block, operation); } return true; } break; case HInductionVarAnalysis::kNeg: if (GenerateCode(info->op_b, trip, graph, block, &opb, in_body, !is_min)) { if (graph != nullptr) { *result = Insert(block, new (graph->GetAllocator()) HNeg(type, opb)); } return true; } break; case HInductionVarAnalysis::kFetch: if (graph != nullptr) { *result = info->fetch; // already in HIR } return true; case HInductionVarAnalysis::kTripCountInLoop: case HInductionVarAnalysis::kTripCountInLoopUnsafe: if (!in_body && !is_min) { // one extra! return GenerateCode(info->op_a, trip, graph, block, result, in_body, is_min); } FALLTHROUGH_INTENDED; case HInductionVarAnalysis::kTripCountInBody: case HInductionVarAnalysis::kTripCountInBodyUnsafe: if (is_min) { if (graph != nullptr) { *result = graph->GetConstant(type, 0); } return true; } else if (in_body) { if (GenerateCode(info->op_a, trip, graph, block, &opb, in_body, is_min)) { if (graph != nullptr) { ArenaAllocator* allocator = graph->GetAllocator(); *result = Insert(block, new (allocator) HSub(type, opb, graph->GetConstant(type, 1))); } return true; } } break; case HInductionVarAnalysis::kNop: LOG(FATAL) << "unexpected invariant nop"; } // switch invariant operation break; case HInductionVarAnalysis::kLinear: { // Linear induction a * i + b, for normalized 0 <= i < TC. For ranges, this should // be restricted to a unit stride to avoid arithmetic wrap-around situations that // are harder to guard against. For a last value, requesting min/max based on any // known stride yields right value. Always avoid any narrowing linear induction or // any type mismatch between the linear induction and the trip count expression. // TODO: careful runtime type conversions could generalize this latter restriction. if (!HInductionVarAnalysis::IsNarrowingLinear(info) && trip->type == type) { int64_t stride_value = 0; if (IsConstant(info->op_a, kExact, &stride_value) && CanLongValueFitIntoInt(stride_value)) { const bool is_min_a = stride_value >= 0 ? is_min : !is_min; if (GenerateCode(trip, trip, graph, block, &opa, in_body, is_min_a) && GenerateCode(info->op_b, trip, graph, block, &opb, in_body, is_min)) { if (graph != nullptr) { ArenaAllocator* allocator = graph->GetAllocator(); HInstruction* oper; if (stride_value == 1) { oper = new (allocator) HAdd(type, opa, opb); } else if (stride_value == -1) { oper = new (graph->GetAllocator()) HSub(type, opb, opa); } else { HInstruction* mul = new (allocator) HMul(type, graph->GetConstant(type, stride_value), opa); oper = new (allocator) HAdd(type, Insert(block, mul), opb); } *result = Insert(block, oper); } return true; } } } break; } case HInductionVarAnalysis::kPolynomial: case HInductionVarAnalysis::kGeometric: break; case HInductionVarAnalysis::kWrapAround: case HInductionVarAnalysis::kPeriodic: { // Wrap-around and periodic inductions are restricted to constants only, so that extreme // values are easy to test at runtime without complications of arithmetic wrap-around. Value extreme = GetVal(info, trip, in_body, is_min); if (IsConstantValue(extreme)) { if (graph != nullptr) { *result = graph->GetConstant(type, extreme.b_constant); } return true; } break; } } // switch induction class } return false; } void InductionVarRange::ReplaceInduction(HInductionVarAnalysis::InductionInfo* info, HInstruction* fetch, HInstruction* replacement) { if (info != nullptr) { if (info->induction_class == HInductionVarAnalysis::kInvariant && info->operation == HInductionVarAnalysis::kFetch && info->fetch == fetch) { info->fetch = replacement; } ReplaceInduction(info->op_a, fetch, replacement); ReplaceInduction(info->op_b, fetch, replacement); } } } // namespace art