/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_ #define ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_ #include #include "base/intrusive_forward_list.h" #include "base/iteration_range.h" #include "base/scoped_arena_allocator.h" #include "base/scoped_arena_containers.h" #include "nodes.h" namespace art { class CodeGenerator; class SsaLivenessAnalysis; static constexpr int kNoRegister = -1; class BlockInfo : public ArenaObject { public: BlockInfo(ScopedArenaAllocator* allocator, const HBasicBlock& block, size_t number_of_ssa_values) : block_(block), live_in_(allocator, number_of_ssa_values, false, kArenaAllocSsaLiveness), live_out_(allocator, number_of_ssa_values, false, kArenaAllocSsaLiveness), kill_(allocator, number_of_ssa_values, false, kArenaAllocSsaLiveness) { UNUSED(block_); live_in_.ClearAllBits(); live_out_.ClearAllBits(); kill_.ClearAllBits(); } private: const HBasicBlock& block_; ArenaBitVector live_in_; ArenaBitVector live_out_; ArenaBitVector kill_; friend class SsaLivenessAnalysis; DISALLOW_COPY_AND_ASSIGN(BlockInfo); }; /** * A live range contains the start and end of a range where an instruction or a temporary * is live. */ class LiveRange final : public ArenaObject { public: LiveRange(size_t start, size_t end, LiveRange* next) : start_(start), end_(end), next_(next) { DCHECK_LT(start, end); DCHECK(next_ == nullptr || next_->GetStart() > GetEnd()); } size_t GetStart() const { return start_; } size_t GetEnd() const { return end_; } LiveRange* GetNext() const { return next_; } bool IntersectsWith(const LiveRange& other) const { return (start_ >= other.start_ && start_ < other.end_) || (other.start_ >= start_ && other.start_ < end_); } bool IsBefore(const LiveRange& other) const { return end_ <= other.start_; } void Dump(std::ostream& stream) const { stream << "[" << start_ << "," << end_ << ")"; } LiveRange* Dup(ScopedArenaAllocator* allocator) const { return new (allocator) LiveRange( start_, end_, next_ == nullptr ? nullptr : next_->Dup(allocator)); } LiveRange* GetLastRange() { return next_ == nullptr ? this : next_->GetLastRange(); } private: size_t start_; size_t end_; LiveRange* next_; friend class LiveInterval; DISALLOW_COPY_AND_ASSIGN(LiveRange); }; /** * A use position represents a live interval use at a given position. */ class UsePosition : public ArenaObject, public IntrusiveForwardListNode { public: UsePosition(HInstruction* user, size_t input_index, size_t position) : user_(user), input_index_(input_index), position_(position) { } explicit UsePosition(size_t position) : user_(nullptr), input_index_(kNoInput), position_(dchecked_integral_cast(position)) { } size_t GetPosition() const { return position_; } HInstruction* GetUser() const { return user_; } bool IsSynthesized() const { return user_ == nullptr; } size_t GetInputIndex() const { return input_index_; } void Dump(std::ostream& stream) const { stream << position_; } HLoopInformation* GetLoopInformation() const { return user_->GetBlock()->GetLoopInformation(); } UsePosition* Clone(ScopedArenaAllocator* allocator) const { return new (allocator) UsePosition(user_, input_index_, position_); } bool RequiresRegister() const { if (IsSynthesized()) return false; Location location = GetUser()->GetLocations()->InAt(GetInputIndex()); return location.IsUnallocated() && location.RequiresRegisterKind(); } private: static constexpr uint32_t kNoInput = static_cast(-1); HInstruction* const user_; const size_t input_index_; const size_t position_; DISALLOW_COPY_AND_ASSIGN(UsePosition); }; using UsePositionList = IntrusiveForwardList; /** * An environment use position represents a live interval for environment use at a given position. */ class EnvUsePosition : public ArenaObject, public IntrusiveForwardListNode { public: EnvUsePosition(HEnvironment* environment, size_t input_index, size_t position) : environment_(environment), input_index_(input_index), position_(position) { DCHECK(environment != nullptr); } size_t GetPosition() const { return position_; } HEnvironment* GetEnvironment() const { return environment_; } size_t GetInputIndex() const { return input_index_; } void Dump(std::ostream& stream) const { stream << position_; } EnvUsePosition* Clone(ScopedArenaAllocator* allocator) const { return new (allocator) EnvUsePosition(environment_, input_index_, position_); } private: HEnvironment* const environment_; const size_t input_index_; const size_t position_; DISALLOW_COPY_AND_ASSIGN(EnvUsePosition); }; using EnvUsePositionList = IntrusiveForwardList; template inline Iterator FindUseAtOrAfterPosition(Iterator first, Iterator last, size_t position) { using value_type = const typename Iterator::value_type; static_assert(std::is_same::value || std::is_same::value, "Expecting value type UsePosition or EnvUsePosition."); Iterator ret = std::find_if( first, last, [position](const value_type& use) { return use.GetPosition() >= position; }); // Check that the processed range is sorted. Do not check the rest of the range to avoid // increasing the complexity of callers from O(n) to O(n^2). DCHECK(std::is_sorted( first, ret, [](const value_type& lhs, const value_type& rhs) { return lhs.GetPosition() < rhs.GetPosition(); })); return ret; } template inline IterationRange FindMatchingUseRange(Iterator first, Iterator last, size_t position_begin, size_t position_end) { Iterator begin = FindUseAtOrAfterPosition(first, last, position_begin); Iterator end = FindUseAtOrAfterPosition(begin, last, position_end); return MakeIterationRange(begin, end); } class SafepointPosition : public ArenaObject { public: explicit SafepointPosition(HInstruction* instruction) : instruction_(instruction), next_(nullptr) {} static size_t ComputePosition(HInstruction* instruction) { // We special case instructions emitted at use site, as their // safepoint position needs to be at their use. if (instruction->IsEmittedAtUseSite()) { // Currently only applies to implicit null checks, which are emitted // at the next instruction. DCHECK(instruction->IsNullCheck()) << instruction->DebugName(); return instruction->GetLifetimePosition() + 2; } else { return instruction->GetLifetimePosition(); } } void SetNext(SafepointPosition* next) { next_ = next; } size_t GetPosition() const { return ComputePosition(instruction_); } SafepointPosition* GetNext() const { return next_; } LocationSummary* GetLocations() const { return instruction_->GetLocations(); } HInstruction* GetInstruction() const { return instruction_; } private: HInstruction* const instruction_; SafepointPosition* next_; DISALLOW_COPY_AND_ASSIGN(SafepointPosition); }; /** * An interval is a list of disjoint live ranges where an instruction is live. * Each instruction that has uses gets an interval. */ class LiveInterval : public ArenaObject { public: static LiveInterval* MakeInterval(ScopedArenaAllocator* allocator, DataType::Type type, HInstruction* instruction = nullptr) { return new (allocator) LiveInterval(allocator, type, instruction); } static LiveInterval* MakeFixedInterval(ScopedArenaAllocator* allocator, int reg, DataType::Type type) { return new (allocator) LiveInterval(allocator, type, nullptr, true, reg, false); } static LiveInterval* MakeTempInterval(ScopedArenaAllocator* allocator, DataType::Type type) { return new (allocator) LiveInterval(allocator, type, nullptr, false, kNoRegister, true); } bool IsFixed() const { return is_fixed_; } bool IsTemp() const { return is_temp_; } // This interval is the result of a split. bool IsSplit() const { return parent_ != this; } void AddTempUse(HInstruction* instruction, size_t temp_index) { DCHECK(IsTemp()); DCHECK(GetUses().empty()) << "A temporary can only have one user"; DCHECK(GetEnvironmentUses().empty()) << "A temporary cannot have environment user"; size_t position = instruction->GetLifetimePosition(); UsePosition* new_use = new (allocator_) UsePosition(instruction, temp_index, position); uses_.push_front(*new_use); AddRange(position, position + 1); } // Record use of an input. The use will be recorded as an environment use if // `environment` is not null and as register use otherwise. If `actual_user` // is specified, the use will be recorded at `actual_user`'s lifetime position. void AddUse(HInstruction* instruction, HEnvironment* environment, size_t input_index, HInstruction* actual_user = nullptr) { bool is_environment = (environment != nullptr); LocationSummary* locations = instruction->GetLocations(); if (actual_user == nullptr) { actual_user = instruction; } // Set the use within the instruction. size_t position = actual_user->GetLifetimePosition() + 1; if (!is_environment) { if (locations->IsFixedInput(input_index) || locations->OutputUsesSameAs(input_index)) { // For fixed inputs and output same as input, the register allocator // requires to have inputs die at the instruction, so that input moves use the // location of the input just before that instruction (and not potential moves due // to splitting). DCHECK_EQ(instruction, actual_user); position = actual_user->GetLifetimePosition(); } else if (!locations->InAt(input_index).IsValid()) { return; } } if (!is_environment && instruction->IsInLoop()) { AddBackEdgeUses(*instruction->GetBlock()); } if ((!uses_.empty()) && (uses_.front().GetUser() == actual_user) && (uses_.front().GetPosition() < position)) { // The user uses the instruction multiple times, and one use dies before the other. // We update the use list so that the latter is first. DCHECK(!is_environment); DCHECK(uses_.front().GetPosition() + 1 == position); UsePositionList::iterator next_pos = uses_.begin(); UsePositionList::iterator insert_pos; do { insert_pos = next_pos; ++next_pos; } while (next_pos != uses_.end() && next_pos->GetPosition() < position); UsePosition* new_use = new (allocator_) UsePosition(instruction, input_index, position); uses_.insert_after(insert_pos, *new_use); if (first_range_->GetEnd() == uses_.front().GetPosition()) { first_range_->end_ = position; } return; } if (is_environment) { DCHECK(env_uses_.empty() || position <= env_uses_.front().GetPosition()); EnvUsePosition* new_env_use = new (allocator_) EnvUsePosition(environment, input_index, position); env_uses_.push_front(*new_env_use); } else { DCHECK(uses_.empty() || position <= uses_.front().GetPosition()); UsePosition* new_use = new (allocator_) UsePosition(instruction, input_index, position); uses_.push_front(*new_use); } size_t start_block_position = instruction->GetBlock()->GetLifetimeStart(); if (first_range_ == nullptr) { // First time we see a use of that interval. first_range_ = last_range_ = range_search_start_ = new (allocator_) LiveRange(start_block_position, position, nullptr); } else if (first_range_->GetStart() == start_block_position) { // There is a use later in the same block or in a following block. // Note that in such a case, `AddRange` for the whole blocks has been called // before arriving in this method, and this is the reason the start of // `first_range_` is before the given `position`. DCHECK_LE(position, first_range_->GetEnd()); } else { DCHECK(first_range_->GetStart() > position); // There is a hole in the interval. Create a new range. // Note that the start of `first_range_` can be equal to `end`: two blocks // having adjacent lifetime positions are not necessarily // predecessor/successor. When two blocks are predecessor/successor, the // liveness algorithm has called `AddRange` before arriving in this method, // and the check line 205 would succeed. first_range_ = range_search_start_ = new (allocator_) LiveRange(start_block_position, position, first_range_); } } void AddPhiUse(HInstruction* instruction, size_t input_index, HBasicBlock* block) { DCHECK(instruction->IsPhi()); if (block->IsInLoop()) { AddBackEdgeUses(*block); } UsePosition* new_use = new (allocator_) UsePosition(instruction, input_index, block->GetLifetimeEnd()); uses_.push_front(*new_use); } ALWAYS_INLINE void AddRange(size_t start, size_t end) { if (first_range_ == nullptr) { first_range_ = last_range_ = range_search_start_ = new (allocator_) LiveRange(start, end, first_range_); } else if (first_range_->GetStart() == end) { // There is a use in the following block. first_range_->start_ = start; } else if (first_range_->GetStart() == start && first_range_->GetEnd() == end) { DCHECK(is_fixed_); } else { DCHECK_GT(first_range_->GetStart(), end); // There is a hole in the interval. Create a new range. first_range_ = range_search_start_ = new (allocator_) LiveRange(start, end, first_range_); } } void AddLoopRange(size_t start, size_t end) { DCHECK(first_range_ != nullptr); DCHECK_LE(start, first_range_->GetStart()); // Find the range that covers the positions after the loop. LiveRange* after_loop = first_range_; LiveRange* last_in_loop = nullptr; while (after_loop != nullptr && after_loop->GetEnd() < end) { DCHECK_LE(start, after_loop->GetStart()); last_in_loop = after_loop; after_loop = after_loop->GetNext(); } if (after_loop == nullptr) { // Uses are only in the loop. first_range_ = last_range_ = range_search_start_ = new (allocator_) LiveRange(start, end, nullptr); } else if (after_loop->GetStart() <= end) { first_range_ = range_search_start_ = after_loop; // There are uses after the loop. first_range_->start_ = start; } else { // The use after the loop is after a lifetime hole. DCHECK(last_in_loop != nullptr); first_range_ = range_search_start_ = last_in_loop; first_range_->start_ = start; first_range_->end_ = end; } } bool HasSpillSlot() const { return spill_slot_ != kNoSpillSlot; } void SetSpillSlot(int slot) { DCHECK(!is_fixed_); DCHECK(!is_temp_); spill_slot_ = slot; } int GetSpillSlot() const { return spill_slot_; } void SetFrom(size_t from) { if (first_range_ != nullptr) { first_range_->start_ = from; } else { // Instruction without uses. DCHECK(uses_.empty()); DCHECK(from == defined_by_->GetLifetimePosition()); first_range_ = last_range_ = range_search_start_ = new (allocator_) LiveRange(from, from + 2, nullptr); } } LiveInterval* GetParent() const { return parent_; } // Returns whether this interval is the parent interval, that is, the interval // that starts where the HInstruction is defined. bool IsParent() const { return parent_ == this; } LiveRange* GetFirstRange() const { return first_range_; } LiveRange* GetLastRange() const { return last_range_; } int GetRegister() const { return register_; } void SetRegister(int reg) { register_ = reg; } void ClearRegister() { register_ = kNoRegister; } bool HasRegister() const { return register_ != kNoRegister; } bool IsDeadAt(size_t position) const { return GetEnd() <= position; } bool IsDefinedAt(size_t position) const { return GetStart() <= position && !IsDeadAt(position); } // Returns true if the interval contains a LiveRange covering `position`. // The range at or immediately after the current position of linear scan // is cached for better performance. If `position` can be smaller than // that, CoversSlow should be used instead. bool Covers(size_t position) { LiveRange* candidate = FindRangeAtOrAfter(position, range_search_start_); range_search_start_ = candidate; return (candidate != nullptr && candidate->GetStart() <= position); } // Same as Covers but always tests all ranges. bool CoversSlow(size_t position) const { LiveRange* candidate = FindRangeAtOrAfter(position, first_range_); return candidate != nullptr && candidate->GetStart() <= position; } // Returns the first intersection of this interval with `current`, which // must be the interval currently being allocated by linear scan. size_t FirstIntersectionWith(LiveInterval* current) const { // Find the first range after the start of `current`. We use the search // cache to improve performance. DCHECK(GetStart() <= current->GetStart() || IsFixed()); LiveRange* other_range = current->first_range_; LiveRange* my_range = FindRangeAtOrAfter(other_range->GetStart(), range_search_start_); if (my_range == nullptr) { return kNoLifetime; } // Advance both intervals and find the first matching range start in // this interval. do { if (my_range->IsBefore(*other_range)) { my_range = my_range->GetNext(); if (my_range == nullptr) { return kNoLifetime; } } else if (other_range->IsBefore(*my_range)) { other_range = other_range->GetNext(); if (other_range == nullptr) { return kNoLifetime; } } else { DCHECK(my_range->IntersectsWith(*other_range)); return std::max(my_range->GetStart(), other_range->GetStart()); } } while (true); } size_t GetStart() const { return first_range_->GetStart(); } size_t GetEnd() const { return last_range_->GetEnd(); } size_t GetLength() const { return GetEnd() - GetStart(); } size_t FirstRegisterUseAfter(size_t position) const { if (is_temp_) { return position == GetStart() ? position : kNoLifetime; } if (IsDefiningPosition(position) && DefinitionRequiresRegister()) { return position; } size_t end = GetEnd(); for (const UsePosition& use : GetUses()) { size_t use_position = use.GetPosition(); if (use_position > end) { break; } if (use_position > position) { if (use.RequiresRegister()) { return use_position; } } } return kNoLifetime; } // Returns the location of the first register use for this live interval, // including a register definition if applicable. size_t FirstRegisterUse() const { return FirstRegisterUseAfter(GetStart()); } // Whether the interval requires a register rather than a stack location. // If needed for performance, this could be cached. bool RequiresRegister() const { return !HasRegister() && FirstRegisterUse() != kNoLifetime; } size_t FirstUseAfter(size_t position) const { if (is_temp_) { return position == GetStart() ? position : kNoLifetime; } if (IsDefiningPosition(position)) { DCHECK(defined_by_->GetLocations()->Out().IsValid()); return position; } size_t end = GetEnd(); for (const UsePosition& use : GetUses()) { size_t use_position = use.GetPosition(); if (use_position > end) { break; } if (use_position > position) { return use_position; } } return kNoLifetime; } const UsePositionList& GetUses() const { return parent_->uses_; } const EnvUsePositionList& GetEnvironmentUses() const { return parent_->env_uses_; } DataType::Type GetType() const { return type_; } HInstruction* GetDefinedBy() const { return defined_by_; } bool HasWillCallSafepoint() const { for (SafepointPosition* safepoint = first_safepoint_; safepoint != nullptr; safepoint = safepoint->GetNext()) { if (safepoint->GetLocations()->WillCall()) return true; } return false; } SafepointPosition* FindSafepointJustBefore(size_t position) const { for (SafepointPosition* safepoint = first_safepoint_, *previous = nullptr; safepoint != nullptr; previous = safepoint, safepoint = safepoint->GetNext()) { if (safepoint->GetPosition() >= position) return previous; } return last_safepoint_; } /** * Split this interval at `position`. This interval is changed to: * [start ... position). * * The new interval covers: * [position ... end) */ LiveInterval* SplitAt(size_t position) { DCHECK(!is_temp_); DCHECK(!is_fixed_); DCHECK_GT(position, GetStart()); if (GetEnd() <= position) { // This range dies before `position`, no need to split. return nullptr; } LiveInterval* new_interval = new (allocator_) LiveInterval(allocator_, type_); SafepointPosition* new_last_safepoint = FindSafepointJustBefore(position); if (new_last_safepoint == nullptr) { new_interval->first_safepoint_ = first_safepoint_; new_interval->last_safepoint_ = last_safepoint_; first_safepoint_ = last_safepoint_ = nullptr; } else if (last_safepoint_ != new_last_safepoint) { new_interval->last_safepoint_ = last_safepoint_; new_interval->first_safepoint_ = new_last_safepoint->GetNext(); DCHECK(new_interval->first_safepoint_ != nullptr); last_safepoint_ = new_last_safepoint; last_safepoint_->SetNext(nullptr); } new_interval->next_sibling_ = next_sibling_; next_sibling_ = new_interval; new_interval->parent_ = parent_; LiveRange* current = first_range_; LiveRange* previous = nullptr; // Iterate over the ranges, and either find a range that covers this position, or // two ranges in between this position (that is, the position is in a lifetime hole). do { if (position >= current->GetEnd()) { // Move to next range. previous = current; current = current->next_; } else if (position <= current->GetStart()) { // If the previous range did not cover this position, we know position is in // a lifetime hole. We can just break the first_range_ and last_range_ links // and return the new interval. DCHECK(previous != nullptr); DCHECK(current != first_range_); new_interval->last_range_ = last_range_; last_range_ = previous; previous->next_ = nullptr; new_interval->first_range_ = current; if (range_search_start_ != nullptr && range_search_start_->GetEnd() >= current->GetEnd()) { // Search start point is inside `new_interval`. Change it to null // (i.e. the end of the interval) in the original interval. range_search_start_ = nullptr; } new_interval->range_search_start_ = new_interval->first_range_; return new_interval; } else { // This range covers position. We create a new last_range_ for this interval // that covers last_range_->Start() and position. We also shorten the current // range and make it the first range of the new interval. DCHECK(position < current->GetEnd() && position > current->GetStart()); new_interval->last_range_ = last_range_; last_range_ = new (allocator_) LiveRange(current->start_, position, nullptr); if (previous != nullptr) { previous->next_ = last_range_; } else { first_range_ = last_range_; } new_interval->first_range_ = current; current->start_ = position; if (range_search_start_ != nullptr && range_search_start_->GetEnd() >= current->GetEnd()) { // Search start point is inside `new_interval`. Change it to `last_range` // in the original interval. This is conservative but always correct. range_search_start_ = last_range_; } new_interval->range_search_start_ = new_interval->first_range_; return new_interval; } } while (current != nullptr); LOG(FATAL) << "Unreachable"; return nullptr; } bool StartsBeforeOrAt(LiveInterval* other) const { return GetStart() <= other->GetStart(); } bool StartsAfter(LiveInterval* other) const { return GetStart() > other->GetStart(); } void Dump(std::ostream& stream) const { stream << "ranges: { "; LiveRange* current = first_range_; while (current != nullptr) { current->Dump(stream); stream << " "; current = current->GetNext(); } stream << "}, uses: { "; for (const UsePosition& use : GetUses()) { use.Dump(stream); stream << " "; } stream << "}, { "; for (const EnvUsePosition& env_use : GetEnvironmentUses()) { env_use.Dump(stream); stream << " "; } stream << "}"; stream << " is_fixed: " << is_fixed_ << ", is_split: " << IsSplit(); stream << " is_low: " << IsLowInterval(); stream << " is_high: " << IsHighInterval(); } // Same as Dump, but adds context such as the instruction defining this interval, and // the register currently assigned to this interval. void DumpWithContext(std::ostream& stream, const CodeGenerator& codegen) const; LiveInterval* GetNextSibling() const { return next_sibling_; } LiveInterval* GetLastSibling() { LiveInterval* result = this; while (result->next_sibling_ != nullptr) { result = result->next_sibling_; } return result; } // Returns the first register hint that is at least free before // the value contained in `free_until`. If none is found, returns // `kNoRegister`. int FindFirstRegisterHint(size_t* free_until, const SsaLivenessAnalysis& liveness) const; // If there is enough at the definition site to find a register (for example // it uses the same input as the first input), returns the register as a hint. // Returns kNoRegister otherwise. int FindHintAtDefinition() const; // Returns the number of required spilling slots (measured as a multiple of the // Dex virtual register size `kVRegSize`). size_t NumberOfSpillSlotsNeeded() const; bool IsFloatingPoint() const { return type_ == DataType::Type::kFloat32 || type_ == DataType::Type::kFloat64; } // Converts the location of the interval to a `Location` object. Location ToLocation() const; // Returns the location of the interval following its siblings at `position`. Location GetLocationAt(size_t position); // Finds the sibling that is defined at `position`. LiveInterval* GetSiblingAt(size_t position); // Returns whether `other` and `this` share the same kind of register. bool SameRegisterKind(Location other) const; bool SameRegisterKind(const LiveInterval& other) const { return IsFloatingPoint() == other.IsFloatingPoint(); } bool HasHighInterval() const { return IsLowInterval(); } bool HasLowInterval() const { return IsHighInterval(); } LiveInterval* GetLowInterval() const { DCHECK(HasLowInterval()); return high_or_low_interval_; } LiveInterval* GetHighInterval() const { DCHECK(HasHighInterval()); return high_or_low_interval_; } bool IsHighInterval() const { return GetParent()->is_high_interval_; } bool IsLowInterval() const { return !IsHighInterval() && (GetParent()->high_or_low_interval_ != nullptr); } void SetLowInterval(LiveInterval* low) { DCHECK(IsHighInterval()); high_or_low_interval_ = low; } void SetHighInterval(LiveInterval* high) { DCHECK(IsLowInterval()); high_or_low_interval_ = high; } void AddHighInterval(bool is_temp = false) { DCHECK(IsParent()); DCHECK(!HasHighInterval()); DCHECK(!HasLowInterval()); high_or_low_interval_ = new (allocator_) LiveInterval( allocator_, type_, defined_by_, false, kNoRegister, is_temp, true); high_or_low_interval_->high_or_low_interval_ = this; if (first_range_ != nullptr) { high_or_low_interval_->first_range_ = first_range_->Dup(allocator_); high_or_low_interval_->last_range_ = high_or_low_interval_->first_range_->GetLastRange(); high_or_low_interval_->range_search_start_ = high_or_low_interval_->first_range_; } auto pos = high_or_low_interval_->uses_.before_begin(); for (const UsePosition& use : uses_) { UsePosition* new_use = use.Clone(allocator_); pos = high_or_low_interval_->uses_.insert_after(pos, *new_use); } auto env_pos = high_or_low_interval_->env_uses_.before_begin(); for (const EnvUsePosition& env_use : env_uses_) { EnvUsePosition* new_env_use = env_use.Clone(allocator_); env_pos = high_or_low_interval_->env_uses_.insert_after(env_pos, *new_env_use); } } // Returns whether an interval, when it is non-split, is using // the same register of one of its input. bool IsUsingInputRegister() const { CHECK(kIsDebugBuild) << "Function should be used only for DCHECKs"; if (defined_by_ != nullptr && !IsSplit()) { for (const HInstruction* input : defined_by_->GetInputs()) { LiveInterval* interval = input->GetLiveInterval(); // Find the interval that covers `defined_by`_. Calls to this function // are made outside the linear scan, hence we need to use CoversSlow. while (interval != nullptr && !interval->CoversSlow(defined_by_->GetLifetimePosition())) { interval = interval->GetNextSibling(); } // Check if both intervals have the same register of the same kind. if (interval != nullptr && interval->SameRegisterKind(*this) && interval->GetRegister() == GetRegister()) { return true; } } } return false; } // Returns whether an interval, when it is non-split, can safely use // the same register of one of its input. Note that this method requires // IsUsingInputRegister() to be true. bool CanUseInputRegister() const { CHECK(kIsDebugBuild) << "Function should be used only for DCHECKs"; DCHECK(IsUsingInputRegister()); if (defined_by_ != nullptr && !IsSplit()) { LocationSummary* locations = defined_by_->GetLocations(); if (locations->OutputCanOverlapWithInputs()) { return false; } for (const HInstruction* input : defined_by_->GetInputs()) { LiveInterval* interval = input->GetLiveInterval(); // Find the interval that covers `defined_by`_. Calls to this function // are made outside the linear scan, hence we need to use CoversSlow. while (interval != nullptr && !interval->CoversSlow(defined_by_->GetLifetimePosition())) { interval = interval->GetNextSibling(); } if (interval != nullptr && interval->SameRegisterKind(*this) && interval->GetRegister() == GetRegister()) { // We found the input that has the same register. Check if it is live after // `defined_by`_. return !interval->CoversSlow(defined_by_->GetLifetimePosition() + 1); } } } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } void AddSafepoint(HInstruction* instruction) { SafepointPosition* safepoint = new (allocator_) SafepointPosition(instruction); if (first_safepoint_ == nullptr) { first_safepoint_ = last_safepoint_ = safepoint; } else { DCHECK_LE(last_safepoint_->GetPosition(), safepoint->GetPosition()); last_safepoint_->SetNext(safepoint); last_safepoint_ = safepoint; } } SafepointPosition* GetFirstSafepoint() const { return first_safepoint_; } // Resets the starting point for range-searching queries to the first range. // Intervals must be reset prior to starting a new linear scan over them. void ResetSearchCache() { range_search_start_ = first_range_; } bool DefinitionRequiresRegister() const { DCHECK(IsParent()); LocationSummary* locations = defined_by_->GetLocations(); Location location = locations->Out(); // This interval is the first interval of the instruction. If the output // of the instruction requires a register, we return the position of that instruction // as the first register use. if (location.IsUnallocated()) { if ((location.GetPolicy() == Location::kRequiresRegister) || (location.GetPolicy() == Location::kSameAsFirstInput && (locations->InAt(0).IsRegister() || locations->InAt(0).IsRegisterPair() || locations->InAt(0).GetPolicy() == Location::kRequiresRegister))) { return true; } else if ((location.GetPolicy() == Location::kRequiresFpuRegister) || (location.GetPolicy() == Location::kSameAsFirstInput && (locations->InAt(0).IsFpuRegister() || locations->InAt(0).IsFpuRegisterPair() || locations->InAt(0).GetPolicy() == Location::kRequiresFpuRegister))) { return true; } } else if (location.IsRegister() || location.IsRegisterPair()) { return true; } return false; } private: LiveInterval(ScopedArenaAllocator* allocator, DataType::Type type, HInstruction* defined_by = nullptr, bool is_fixed = false, int reg = kNoRegister, bool is_temp = false, bool is_high_interval = false) : allocator_(allocator), first_range_(nullptr), last_range_(nullptr), range_search_start_(nullptr), first_safepoint_(nullptr), last_safepoint_(nullptr), uses_(), env_uses_(), type_(type), next_sibling_(nullptr), parent_(this), register_(reg), spill_slot_(kNoSpillSlot), is_fixed_(is_fixed), is_temp_(is_temp), is_high_interval_(is_high_interval), high_or_low_interval_(nullptr), defined_by_(defined_by) {} // Searches for a LiveRange that either covers the given position or is the // first next LiveRange. Returns null if no such LiveRange exists. Ranges // known to end before `position` can be skipped with `search_start`. LiveRange* FindRangeAtOrAfter(size_t position, LiveRange* search_start) const { if (kIsDebugBuild) { if (search_start != first_range_) { // If we are not searching the entire list of ranges, make sure we do // not skip the range we are searching for. if (search_start == nullptr) { DCHECK(IsDeadAt(position)); } else if (search_start->GetStart() > position) { DCHECK_EQ(search_start, FindRangeAtOrAfter(position, first_range_)); } } } LiveRange* range; for (range = search_start; range != nullptr && range->GetEnd() <= position; range = range->GetNext()) { continue; } return range; } bool IsDefiningPosition(size_t position) const { return IsParent() && (position == GetStart()); } bool HasSynthesizeUseAt(size_t position) const { for (const UsePosition& use : GetUses()) { size_t use_position = use.GetPosition(); if ((use_position == position) && use.IsSynthesized()) { return true; } if (use_position > position) break; } return false; } void AddBackEdgeUses(const HBasicBlock& block_at_use) { DCHECK(block_at_use.IsInLoop()); if (block_at_use.GetGraph()->HasIrreducibleLoops()) { // Linear order may not be well formed when irreducible loops are present, // i.e. loop blocks may not be adjacent and a back edge may not be last, // which violates assumptions made in this method. return; } // Add synthesized uses at the back edge of loops to help the register allocator. // Note that this method is called in decreasing liveness order, to faciliate adding // uses at the head of the `uses_` list. Because below // we iterate from inner-most to outer-most, which is in increasing liveness order, // we need to add subsequent entries after the last inserted entry. const UsePositionList::iterator old_begin = uses_.begin(); UsePositionList::iterator insert_pos = uses_.before_begin(); for (HLoopInformationOutwardIterator it(block_at_use); !it.Done(); it.Advance()) { HLoopInformation* current = it.Current(); if (GetDefinedBy()->GetLifetimePosition() >= current->GetHeader()->GetLifetimeStart()) { // This interval is defined in the loop. We can stop going outward. break; } // We're only adding a synthesized use at the last back edge. Adding synthesized uses on // all back edges is not necessary: anything used in the loop will have its use at the // last back edge. If we want branches in a loop to have better register allocation than // another branch, then it is the linear order we should change. size_t back_edge_use_position = current->GetLifetimeEnd(); if ((old_begin != uses_.end()) && (old_begin->GetPosition() <= back_edge_use_position)) { // There was a use already seen in this loop. Therefore the previous call to `AddUse` // already inserted the backedge use. We can stop going outward. DCHECK(HasSynthesizeUseAt(back_edge_use_position)); break; } DCHECK(insert_pos != uses_.before_begin() ? back_edge_use_position > insert_pos->GetPosition() : current == block_at_use.GetLoopInformation()) << std::distance(uses_.before_begin(), insert_pos); UsePosition* new_use = new (allocator_) UsePosition(back_edge_use_position); insert_pos = uses_.insert_after(insert_pos, *new_use); } } ScopedArenaAllocator* const allocator_; // Ranges of this interval. We need a quick access to the last range to test // for liveness (see `IsDeadAt`). LiveRange* first_range_; LiveRange* last_range_; // The first range at or after the current position of a linear scan. It is // used to optimize range-searching queries. LiveRange* range_search_start_; // Safepoints where this interval is live. SafepointPosition* first_safepoint_; SafepointPosition* last_safepoint_; // Uses of this interval. Only the parent interval keeps these lists. UsePositionList uses_; EnvUsePositionList env_uses_; // The instruction type this interval corresponds to. const DataType::Type type_; // Live interval that is the result of a split. LiveInterval* next_sibling_; // The first interval from which split intervals come from. LiveInterval* parent_; // The register allocated to this interval. int register_; // The spill slot allocated to this interval. int spill_slot_; // Whether the interval is for a fixed register. const bool is_fixed_; // Whether the interval is for a temporary. const bool is_temp_; // Whether this interval is a synthesized interval for register pair. const bool is_high_interval_; // If this interval needs a register pair, the high or low equivalent. // `is_high_interval_` tells whether this holds the low or the high. LiveInterval* high_or_low_interval_; // The instruction represented by this interval. HInstruction* const defined_by_; static constexpr int kNoRegister = -1; static constexpr int kNoSpillSlot = -1; ART_FRIEND_TEST(RegisterAllocatorTest, SpillInactive); DISALLOW_COPY_AND_ASSIGN(LiveInterval); }; /** * Analysis that computes the liveness of instructions: * * (a) Non-environment uses of an instruction always make * the instruction live. * (b) Environment uses of an instruction whose type is object (that is, non-primitive), make the * instruction live, unless the class has an @DeadReferenceSafe annotation. * This avoids unexpected premature reference enqueuing or finalization, which could * result in premature deletion of native objects. In the presence of @DeadReferenceSafe, * object references are treated like primitive types. * (c) When the graph has the debuggable property, environment uses * of an instruction that has a primitive type make the instruction live. * If the graph does not have the debuggable property, the environment * use has no effect, and may get a 'none' value after register allocation. * (d) When compiling in OSR mode, all loops in the compiled method may be entered * from the interpreter via SuspendCheck; such use in SuspendCheck makes the instruction * live. * * (b), (c) and (d) are implemented through SsaLivenessAnalysis::ShouldBeLiveForEnvironment. */ class SsaLivenessAnalysis : public ValueObject { public: SsaLivenessAnalysis(HGraph* graph, CodeGenerator* codegen, ScopedArenaAllocator* allocator) : graph_(graph), codegen_(codegen), allocator_(allocator), block_infos_(graph->GetBlocks().size(), nullptr, allocator_->Adapter(kArenaAllocSsaLiveness)), instructions_from_ssa_index_(allocator_->Adapter(kArenaAllocSsaLiveness)), instructions_from_lifetime_position_(allocator_->Adapter(kArenaAllocSsaLiveness)), number_of_ssa_values_(0) { } void Analyze(); BitVector* GetLiveInSet(const HBasicBlock& block) const { return &block_infos_[block.GetBlockId()]->live_in_; } BitVector* GetLiveOutSet(const HBasicBlock& block) const { return &block_infos_[block.GetBlockId()]->live_out_; } BitVector* GetKillSet(const HBasicBlock& block) const { return &block_infos_[block.GetBlockId()]->kill_; } HInstruction* GetInstructionFromSsaIndex(size_t index) const { return instructions_from_ssa_index_[index]; } HInstruction* GetInstructionFromPosition(size_t index) const { return instructions_from_lifetime_position_[index]; } HBasicBlock* GetBlockFromPosition(size_t index) const { HInstruction* instruction = GetInstructionFromPosition(index); if (instruction == nullptr) { // If we are at a block boundary, get the block following. instruction = GetInstructionFromPosition(index + 1); } return instruction->GetBlock(); } bool IsAtBlockBoundary(size_t index) const { return GetInstructionFromPosition(index) == nullptr; } HInstruction* GetTempUser(LiveInterval* temp) const { // A temporary shares the same lifetime start as the instruction that requires it. DCHECK(temp->IsTemp()); HInstruction* user = GetInstructionFromPosition(temp->GetStart() / 2); DCHECK_EQ(user, temp->GetUses().front().GetUser()); return user; } size_t GetTempIndex(LiveInterval* temp) const { // We use the input index to store the index of the temporary in the user's temporary list. DCHECK(temp->IsTemp()); return temp->GetUses().front().GetInputIndex(); } size_t GetMaxLifetimePosition() const { return instructions_from_lifetime_position_.size() * 2 - 1; } size_t GetNumberOfSsaValues() const { return number_of_ssa_values_; } static constexpr const char* kLivenessPassName = "liveness"; private: // Give an SSA number to each instruction that defines a value used by another instruction, // and setup the lifetime information of each instruction and block. void NumberInstructions(); // Compute live ranges of instructions, as well as live_in, live_out and kill sets. void ComputeLiveness(); // Compute the live ranges of instructions, as well as the initial live_in, live_out and // kill sets, that do not take into account backward branches. void ComputeLiveRanges(); // After computing the initial sets, this method does a fixed point // calculation over the live_in and live_out set to take into account // backwards branches. void ComputeLiveInAndLiveOutSets(); // Update the live_in set of the block and returns whether it has changed. bool UpdateLiveIn(const HBasicBlock& block); // Update the live_out set of the block and returns whether it has changed. bool UpdateLiveOut(const HBasicBlock& block); static void ProcessEnvironment(HInstruction* instruction, HInstruction* actual_user, BitVector* live_in); static void RecursivelyProcessInputs(HInstruction* instruction, HInstruction* actual_user, BitVector* live_in); // Returns whether `instruction` in an HEnvironment held by `env_holder` // should be kept live by the HEnvironment. static bool ShouldBeLiveForEnvironment(HInstruction* env_holder, HInstruction* instruction) { DCHECK(instruction != nullptr); // A value that's not live in compiled code may still be needed in interpreter, // due to code motion, etc. if (env_holder->IsDeoptimize()) return true; // A value live at a throwing instruction in a try block may be copied by // the exception handler to its location at the top of the catch block. if (env_holder->CanThrowIntoCatchBlock()) return true; HGraph* graph = instruction->GetBlock()->GetGraph(); if (graph->IsDebuggable()) return true; // When compiling in OSR mode, all loops in the compiled method may be entered // from the interpreter via SuspendCheck; thus we need to preserve the environment. if (env_holder->IsSuspendCheck() && graph->IsCompilingOsr()) return true; if (graph -> IsDeadReferenceSafe()) return false; return instruction->GetType() == DataType::Type::kReference; } void CheckNoLiveInIrreducibleLoop(const HBasicBlock& block) const { if (!block.IsLoopHeader() || !block.GetLoopInformation()->IsIrreducible()) { return; } BitVector* live_in = GetLiveInSet(block); // To satisfy our liveness algorithm, we need to ensure loop headers of // irreducible loops do not have any live-in instructions, except constants // and the current method, which can be trivially re-materialized. for (uint32_t idx : live_in->Indexes()) { HInstruction* instruction = GetInstructionFromSsaIndex(idx); DCHECK(instruction->GetBlock()->IsEntryBlock()) << instruction->DebugName(); DCHECK(!instruction->IsParameterValue()); DCHECK(instruction->IsCurrentMethod() || instruction->IsConstant()) << instruction->DebugName(); } } HGraph* const graph_; CodeGenerator* const codegen_; // Use a local ScopedArenaAllocator for allocating memory. // This allocator must remain alive while doing register allocation. ScopedArenaAllocator* const allocator_; ScopedArenaVector block_infos_; // Temporary array used when computing live_in, live_out, and kill sets. ScopedArenaVector instructions_from_ssa_index_; // Temporary array used when inserting moves in the graph. ScopedArenaVector instructions_from_lifetime_position_; size_t number_of_ssa_values_; ART_FRIEND_TEST(RegisterAllocatorTest, SpillInactive); ART_FRIEND_TEST(RegisterAllocatorTest, FreeUntil); DISALLOW_COPY_AND_ASSIGN(SsaLivenessAnalysis); }; } // namespace art #endif // ART_COMPILER_OPTIMIZING_SSA_LIVENESS_ANALYSIS_H_