/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_LIBARTBASE_BASE_SAFE_MAP_H_ #define ART_LIBARTBASE_BASE_SAFE_MAP_H_ #include #include #include #include namespace art { // Equivalent to std::map, but without operator[] and its bug-prone semantics (in particular, // the implicit insertion of a default-constructed value on failed lookups). template , typename Allocator = std::allocator>> class SafeMap { private: typedef SafeMap Self; public: typedef typename ::std::map::key_compare key_compare; typedef typename ::std::map::value_compare value_compare; typedef typename ::std::map::allocator_type allocator_type; typedef typename ::std::map::iterator iterator; typedef typename ::std::map::const_iterator const_iterator; typedef typename ::std::map::size_type size_type; typedef typename ::std::map::key_type key_type; typedef typename ::std::map::value_type value_type; SafeMap() = default; SafeMap(const SafeMap&) = default; SafeMap(SafeMap&&) = default; explicit SafeMap(const key_compare& cmp, const allocator_type& allocator = allocator_type()) : map_(cmp, allocator) { } Self& operator=(const Self& rhs) { map_ = rhs.map_; return *this; } allocator_type get_allocator() const { return map_.get_allocator(); } key_compare key_comp() const { return map_.key_comp(); } value_compare value_comp() const { return map_.value_comp(); } iterator begin() { return map_.begin(); } const_iterator begin() const { return map_.begin(); } iterator end() { return map_.end(); } const_iterator end() const { return map_.end(); } bool empty() const { return map_.empty(); } size_type size() const { return map_.size(); } void swap(Self& other) { map_.swap(other.map_); } void clear() { map_.clear(); } iterator erase(iterator it) { return map_.erase(it); } template size_type erase(const Kv& k) { return map_.erase(k); } template iterator find(const Kv& k) { return map_.find(k); } template const_iterator find(const Kv& k) const { return map_.find(k); } template iterator lower_bound(const Kv& k) { return map_.lower_bound(k); } template const_iterator lower_bound(const Kv& k) const { return map_.lower_bound(k); } template iterator upper_bound(const Kv& k) { return map_.upper_bound(k); } template const_iterator upper_bound(const Kv& k) const { return map_.upper_bound(k); } template size_type count(const Kv& k) const { return map_.count(k); } // Note that unlike std::map's operator[], this doesn't return a reference to the value. V Get(const K& k) const { const_iterator it = map_.find(k); DCHECK(it != map_.end()); return it->second; } // Used to insert a new mapping. iterator Put(const K& k, const V& v) { std::pair result = map_.emplace(k, v); DCHECK(result.second); // Check we didn't accidentally overwrite an existing value. return result.first; } iterator Put(const K& k, V&& v) { std::pair result = map_.emplace(k, std::move(v)); DCHECK(result.second); // Check we didn't accidentally overwrite an existing value. return result.first; } // Used to insert a new mapping at a known position for better performance. iterator PutBefore(const_iterator pos, const K& k, const V& v) { // Check that we're using the correct position and the key is not in the map. DCHECK(pos == map_.end() || map_.key_comp()(k, pos->first)); DCHECK(pos == map_.begin() || map_.key_comp()((--const_iterator(pos))->first, k)); return map_.emplace_hint(pos, k, v); } iterator PutBefore(const_iterator pos, const K& k, V&& v) { // Check that we're using the correct position and the key is not in the map. DCHECK(pos == map_.end() || map_.key_comp()(k, pos->first)); DCHECK(pos == map_.begin() || map_.key_comp()((--const_iterator(pos))->first, k)); return map_.emplace_hint(pos, k, std::move(v)); } // Used to insert a new mapping or overwrite an existing mapping. Note that if the value type // of this container is a pointer, any overwritten pointer will be lost and if this container // was the owner, you have a leak. Returns iterator pointing to the new or overwritten entry. iterator Overwrite(const K& k, const V& v) { std::pair result = map_.insert(std::make_pair(k, v)); if (!result.second) { // Already there - update the value for the existing key result.first->second = v; } return result.first; } template V& GetOrCreate(const K& k, CreateFn create) { static_assert(std::is_same::type>::value, "Argument `create` should return a value of type V."); auto lb = lower_bound(k); if (lb != end() && !key_comp()(k, lb->first)) { return lb->second; } auto it = PutBefore(lb, k, create()); return it->second; } iterator FindOrAdd(const K& k, const V& v) { iterator it = find(k); return it == end() ? Put(k, v) : it; } iterator FindOrAdd(const K& k) { iterator it = find(k); return it == end() ? Put(k, V()) : it; } bool Equals(const Self& rhs) const { return map_ == rhs.map_; } template std::pair emplace(Args&&... args) { return map_.emplace(std::forward(args)...); } private: ::std::map map_; }; template bool operator==(const SafeMap& lhs, const SafeMap& rhs) { return lhs.Equals(rhs); } template bool operator!=(const SafeMap& lhs, const SafeMap& rhs) { return !(lhs == rhs); } } // namespace art #endif // ART_LIBARTBASE_BASE_SAFE_MAP_H_