/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // adapted from frameworks/native/services/sensorservice/Fusion.cpp #include #include #include #include #include #ifdef DEBUG_CH // change to 0 to disable fusion debugging output #define DEBUG_FUSION 0 #endif #define ACC 1 #define MAG 2 #define GYRO 4 #define DEFAULT_GYRO_VAR 1e-7f #define DEFAULT_GYRO_BIAS_VAR 1e-12f #define DEFAULT_ACC_STDEV 5e-2f #define DEFAULT_MAG_STDEV 5e-1f #define GEOMAG_GYRO_VAR 2e-4f #define GEOMAG_GYRO_BIAS_VAR 1e-4f #define GEOMAG_ACC_STDEV 0.02f #define GEOMAG_MAG_STDEV 0.02f #define SYMMETRY_TOLERANCE 1e-10f #define FAKE_MAG_INTERVAL 1.0f //sec #define NOMINAL_GRAVITY 9.81f #define FREE_FALL_THRESHOLD (0.1f * NOMINAL_GRAVITY) #define FREE_FALL_THRESHOLD_SQ (FREE_FALL_THRESHOLD * FREE_FALL_THRESHOLD) #define MAX_VALID_MAGNETIC_FIELD 75.0f #define MAX_VALID_MAGNETIC_FIELD_SQ (MAX_VALID_MAGNETIC_FIELD * MAX_VALID_MAGNETIC_FIELD) #define MIN_VALID_MAGNETIC_FIELD 20.0f //norminal mag field strength is 25uT in some area #define MIN_VALID_MAGNETIC_FIELD_SQ (MIN_VALID_MAGNETIC_FIELD * MIN_VALID_MAGNETIC_FIELD) #define MIN_VALID_CROSS_PRODUCT_MAG 1.0e-3 #define MIN_VALID_CROSS_PRODUCT_MAG_SQ (MIN_VALID_CROSS_PRODUCT_MAG * MIN_VALID_CROSS_PRODUCT_MAG) #define DELTA_TIME_MARGIN 1.0e-9f #define TRUST_DURATION_MANUAL_MAG_CAL 5.f //unit: seconds void initFusion(struct Fusion *fusion, uint32_t flags) { fusion->flags = flags; if (flags & FUSION_USE_GYRO) { // normal fusion mode fusion->param.gyro_var = DEFAULT_GYRO_VAR; fusion->param.gyro_bias_var = DEFAULT_GYRO_BIAS_VAR; fusion->param.acc_stdev = DEFAULT_ACC_STDEV; fusion->param.mag_stdev = DEFAULT_MAG_STDEV; } else { // geo mag mode fusion->param.gyro_var = GEOMAG_GYRO_VAR; fusion->param.gyro_bias_var = GEOMAG_GYRO_BIAS_VAR; fusion->param.acc_stdev = GEOMAG_ACC_STDEV; fusion->param.mag_stdev = GEOMAG_MAG_STDEV; } if (flags & FUSION_REINITIALIZE) { initVec3(&fusion->Ba, 0.0f, 0.0f, 1.0f); initVec3(&fusion->Bm, 0.0f, 1.0f, 0.0f); initVec4(&fusion->x0, 0.0f, 0.0f, 0.0f, 0.0f); initVec3(&fusion->x1, 0.0f, 0.0f, 0.0f); fusion->mInitState = 0; fusion->mPredictDt = 0.0f; fusion->mCount[0] = fusion->mCount[1] = fusion->mCount[2] = 0; initVec3(&fusion->mData[0], 0.0f, 0.0f, 0.0f); initVec3(&fusion->mData[1], 0.0f, 0.0f, 0.0f); initVec3(&fusion->mData[2], 0.0f, 0.0f, 0.0f); } else { // mask off disabled sensor bit fusion->mInitState &= (ACC | ((fusion->flags & FUSION_USE_MAG) ? MAG : 0) | ((fusion->flags & FUSION_USE_GYRO) ? GYRO : 0)); } fusionSetMagTrust(fusion, NORMAL); fusion->lastMagInvalid = false; } int fusionHasEstimate(const struct Fusion *fusion) { // waive sensor init depends on the mode return fusion->mInitState == (ACC | ((fusion->flags & FUSION_USE_MAG) ? MAG : 0) | ((fusion->flags & FUSION_USE_GYRO) ? GYRO : 0)); } static void updateDt(struct Fusion *fusion, float dT) { if (fabsf(fusion->mPredictDt - dT) > DELTA_TIME_MARGIN) { float dT2 = dT * dT; float dT3 = dT2 * dT; float q00 = fusion->param.gyro_var * dT + 0.33333f * fusion->param.gyro_bias_var * dT3; float q11 = fusion->param.gyro_bias_var * dT; float q10 = 0.5f * fusion->param.gyro_bias_var * dT2; float q01 = q10; initDiagonalMatrix(&fusion->GQGt[0][0], q00); initDiagonalMatrix(&fusion->GQGt[0][1], -q10); initDiagonalMatrix(&fusion->GQGt[1][0], -q01); initDiagonalMatrix(&fusion->GQGt[1][1], q11); fusion->mPredictDt = dT; } } static int fusion_init_complete(struct Fusion *fusion, int what, const struct Vec3 *d, float dT) { if (fusionHasEstimate(fusion)) { return 1; } switch (what) { case ACC: { if (!(fusion->flags & FUSION_USE_GYRO)) { updateDt(fusion, dT); } struct Vec3 unityD = *d; vec3Normalize(&unityD); vec3Add(&fusion->mData[0], &unityD); ++fusion->mCount[0]; if (fusion->mCount[0] == 8) { fusion->mInitState |= ACC; } break; } case MAG: { struct Vec3 unityD = *d; vec3Normalize(&unityD); vec3Add(&fusion->mData[1], &unityD); ++fusion->mCount[1]; fusion->mInitState |= MAG; break; } case GYRO: { updateDt(fusion, dT); struct Vec3 scaledD = *d; vec3ScalarMul(&scaledD, dT); vec3Add(&fusion->mData[2], &scaledD); ++fusion->mCount[2]; fusion->mInitState |= GYRO; break; } default: // assert(!"should not be here"); break; } if (fusionHasEstimate(fusion)) { vec3ScalarMul(&fusion->mData[0], 1.0f / fusion->mCount[0]); if (fusion->flags & FUSION_USE_MAG) { vec3ScalarMul(&fusion->mData[1], 1.0f / fusion->mCount[1]); } else { fusion->fake_mag_decimation = 0.f; } struct Vec3 up = fusion->mData[0]; struct Vec3 east; if (fusion->flags & FUSION_USE_MAG) { vec3Cross(&east, &fusion->mData[1], &up); vec3Normalize(&east); } else { findOrthogonalVector(up.x, up.y, up.z, &east.x, &east.y, &east.z); } struct Vec3 north; vec3Cross(&north, &up, &east); struct Mat33 R; initMatrixColumns(&R, &east, &north, &up); //Quat q; //initQuat(&q, &R); initQuat(&fusion->x0, &R); initVec3(&fusion->x1, 0.0f, 0.0f, 0.0f); initZeroMatrix(&fusion->P[0][0]); initZeroMatrix(&fusion->P[0][1]); initZeroMatrix(&fusion->P[1][0]); initZeroMatrix(&fusion->P[1][1]); fusionSetMagTrust(fusion, INITIALIZATION); } return 0; } static void matrixCross(struct Mat33 *out, struct Vec3 *p, float diag) { out->elem[0][0] = diag; out->elem[1][1] = diag; out->elem[2][2] = diag; out->elem[1][0] = p->z; out->elem[0][1] = -p->z; out->elem[2][0] = -p->y; out->elem[0][2] = p->y; out->elem[2][1] = p->x; out->elem[1][2] = -p->x; } static void fusionCheckState(struct Fusion *fusion) { if (!mat33IsPositiveSemidefinite(&fusion->P[0][0], SYMMETRY_TOLERANCE) || !mat33IsPositiveSemidefinite( &fusion->P[1][1], SYMMETRY_TOLERANCE)) { initZeroMatrix(&fusion->P[0][0]); initZeroMatrix(&fusion->P[0][1]); initZeroMatrix(&fusion->P[1][0]); initZeroMatrix(&fusion->P[1][1]); } } #define kEps 1.0E-4f UNROLLED static void fusionPredict(struct Fusion *fusion, const struct Vec3 *w) { const float dT = fusion->mPredictDt; Quat q = fusion->x0; struct Vec3 b = fusion->x1; struct Vec3 we = *w; vec3Sub(&we, &b); struct Mat33 I33; initDiagonalMatrix(&I33, 1.0f); struct Mat33 I33dT; initDiagonalMatrix(&I33dT, dT); struct Mat33 wx; matrixCross(&wx, &we, 0.0f); struct Mat33 wx2; mat33Multiply(&wx2, &wx, &wx); float norm_we = vec3Norm(&we); if (fabsf(norm_we) < kEps) { return; } float lwedT = norm_we * dT; float hlwedT = 0.5f * lwedT; float ilwe = 1.0f / norm_we; float k0 = (1.0f - cosf(lwedT)) * (ilwe * ilwe); float k1 = sinf(lwedT); float k2 = cosf(hlwedT); struct Vec3 psi = we; vec3ScalarMul(&psi, sinf(hlwedT) * ilwe); struct Vec3 negPsi = psi; vec3ScalarMul(&negPsi, -1.0f); struct Mat33 O33; matrixCross(&O33, &negPsi, k2); struct Mat44 O; uint32_t i; for (i = 0; i < 3; ++i) { uint32_t j; for (j = 0; j < 3; ++j) { O.elem[i][j] = O33.elem[i][j]; } } O.elem[3][0] = -psi.x; O.elem[3][1] = -psi.y; O.elem[3][2] = -psi.z; O.elem[3][3] = k2; O.elem[0][3] = psi.x; O.elem[1][3] = psi.y; O.elem[2][3] = psi.z; struct Mat33 tmp = wx; mat33ScalarMul(&tmp, k1 * ilwe); fusion->Phi0[0] = I33; mat33Sub(&fusion->Phi0[0], &tmp); tmp = wx2; mat33ScalarMul(&tmp, k0); mat33Add(&fusion->Phi0[0], &tmp); tmp = wx; mat33ScalarMul(&tmp, k0); fusion->Phi0[1] = tmp; mat33Sub(&fusion->Phi0[1], &I33dT); tmp = wx2; mat33ScalarMul(&tmp, ilwe * ilwe * ilwe * (lwedT - k1)); mat33Sub(&fusion->Phi0[1], &tmp); mat44Apply(&fusion->x0, &O, &q); if (fusion->x0.w < 0.0f) { fusion->x0.x = -fusion->x0.x; fusion->x0.y = -fusion->x0.y; fusion->x0.z = -fusion->x0.z; fusion->x0.w = -fusion->x0.w; } // Pnew = Phi * P struct Mat33 Pnew[2][2]; mat33Multiply(&Pnew[0][0], &fusion->Phi0[0], &fusion->P[0][0]); mat33Multiply(&tmp, &fusion->Phi0[1], &fusion->P[1][0]); mat33Add(&Pnew[0][0], &tmp); mat33Multiply(&Pnew[0][1], &fusion->Phi0[0], &fusion->P[0][1]); mat33Multiply(&tmp, &fusion->Phi0[1], &fusion->P[1][1]); mat33Add(&Pnew[0][1], &tmp); Pnew[1][0] = fusion->P[1][0]; Pnew[1][1] = fusion->P[1][1]; // P = Pnew * Phi^T mat33MultiplyTransposed2(&fusion->P[0][0], &Pnew[0][0], &fusion->Phi0[0]); mat33MultiplyTransposed2(&tmp, &Pnew[0][1], &fusion->Phi0[1]); mat33Add(&fusion->P[0][0], &tmp); fusion->P[0][1] = Pnew[0][1]; mat33MultiplyTransposed2(&fusion->P[1][0], &Pnew[1][0], &fusion->Phi0[0]); mat33MultiplyTransposed2(&tmp, &Pnew[1][1], &fusion->Phi0[1]); mat33Add(&fusion->P[1][0], &tmp); fusion->P[1][1] = Pnew[1][1]; mat33Add(&fusion->P[0][0], &fusion->GQGt[0][0]); mat33Add(&fusion->P[0][1], &fusion->GQGt[0][1]); mat33Add(&fusion->P[1][0], &fusion->GQGt[1][0]); mat33Add(&fusion->P[1][1], &fusion->GQGt[1][1]); fusionCheckState(fusion); } void fusionHandleGyro(struct Fusion *fusion, const struct Vec3 *w, float dT) { if (!fusion_init_complete(fusion, GYRO, w, dT)) { return; } updateDt(fusion, dT); fusionPredict(fusion, w); } UNROLLED static void scaleCovariance(struct Mat33 *out, const struct Mat33 *A, const struct Mat33 *P) { uint32_t r; for (r = 0; r < 3; ++r) { uint32_t j; for (j = r; j < 3; ++j) { float apat = 0.0f; uint32_t c; for (c = 0; c < 3; ++c) { float v = A->elem[c][r] * P->elem[c][c] * 0.5f; uint32_t k; for (k = c + 1; k < 3; ++k) { v += A->elem[k][r] * P->elem[c][k]; } apat += 2.0f * v * A->elem[c][j]; } out->elem[r][j] = apat; out->elem[j][r] = apat; } } } static void getF(struct Vec4 F[3], const struct Vec4 *q) { F[0].x = q->w; F[1].x = -q->z; F[2].x = q->y; F[0].y = q->z; F[1].y = q->w; F[2].y = -q->x; F[0].z = -q->y; F[1].z = q->x; F[2].z = q->w; F[0].w = -q->x; F[1].w = -q->y; F[2].w = -q->z; } static void fusionUpdate( struct Fusion *fusion, const struct Vec3 *z, const struct Vec3 *Bi, float sigma) { struct Mat33 A; quatToMatrix(&A, &fusion->x0); struct Vec3 Bb; mat33Apply(&Bb, &A, Bi); struct Mat33 L; matrixCross(&L, &Bb, 0.0f); struct Mat33 R; initDiagonalMatrix(&R, sigma * sigma); struct Mat33 S; scaleCovariance(&S, &L, &fusion->P[0][0]); mat33Add(&S, &R); struct Mat33 Si; mat33Invert(&Si, &S); struct Mat33 LtSi; mat33MultiplyTransposed(&LtSi, &L, &Si); struct Mat33 K[2]; mat33Multiply(&K[0], &fusion->P[0][0], &LtSi); mat33MultiplyTransposed(&K[1], &fusion->P[0][1], &LtSi); struct Mat33 K0L; mat33Multiply(&K0L, &K[0], &L); struct Mat33 K1L; mat33Multiply(&K1L, &K[1], &L); struct Mat33 tmp; mat33Multiply(&tmp, &K0L, &fusion->P[0][0]); mat33Sub(&fusion->P[0][0], &tmp); mat33Multiply(&tmp, &K1L, &fusion->P[0][1]); mat33Sub(&fusion->P[1][1], &tmp); mat33Multiply(&tmp, &K0L, &fusion->P[0][1]); mat33Sub(&fusion->P[0][1], &tmp); mat33Transpose(&fusion->P[1][0], &fusion->P[0][1]); struct Vec3 e = *z; vec3Sub(&e, &Bb); struct Vec3 dq; mat33Apply(&dq, &K[0], &e); struct Vec4 F[3]; getF(F, &fusion->x0); // 4x3 * 3x1 => 4x1 struct Vec4 q; q.x = fusion->x0.x + 0.5f * (F[0].x * dq.x + F[1].x * dq.y + F[2].x * dq.z); q.y = fusion->x0.y + 0.5f * (F[0].y * dq.x + F[1].y * dq.y + F[2].y * dq.z); q.z = fusion->x0.z + 0.5f * (F[0].z * dq.x + F[1].z * dq.y + F[2].z * dq.z); q.w = fusion->x0.w + 0.5f * (F[0].w * dq.x + F[1].w * dq.y + F[2].w * dq.z); fusion->x0 = q; quatNormalize(&fusion->x0); if (fusion->flags & FUSION_USE_MAG) { // accumulate gyro bias (causes self spin) only if not // game rotation vector struct Vec3 db; mat33Apply(&db, &K[1], &e); vec3Add(&fusion->x1, &db); } fusionCheckState(fusion); } #define ACC_TRUSTWORTHY(abs_norm_err) ((abs_norm_err) < 1.f) #define ACC_COS_CONV_FACTOR 0.01f #define ACC_COS_CONV_LIMIT 3.f int fusionHandleAcc(struct Fusion *fusion, const struct Vec3 *a, float dT) { if (!fusion_init_complete(fusion, ACC, a, dT)) { return -EINVAL; } float norm2 = vec3NormSquared(a); if (norm2 < FREE_FALL_THRESHOLD_SQ) { return -EINVAL; } float l = sqrtf(norm2); float l_inv = 1.0f / l; if (!(fusion->flags & FUSION_USE_GYRO)) { // geo mag mode // drive the Kalman filter with zero mean dummy gyro vector struct Vec3 w_dummy; // avoid (fabsf(norm_we) < kEps) in fusionPredict() initVec3(&w_dummy, fusion->x1.x + kEps, fusion->x1.y + kEps, fusion->x1.z + kEps); updateDt(fusion, dT); fusionPredict(fusion, &w_dummy); } struct Mat33 R; fusionGetRotationMatrix(fusion, &R); if (!(fusion->flags & FUSION_USE_MAG) && (fusion->fake_mag_decimation += dT) > FAKE_MAG_INTERVAL) { // game rotation mode, provide fake mag update to prevent // P to diverge over time struct Vec3 m; mat33Apply(&m, &R, &fusion->Bm); fusionUpdate(fusion, &m, &fusion->Bm, fusion->param.mag_stdev); fusion->fake_mag_decimation = 0.f; } struct Vec3 unityA = *a; vec3ScalarMul(&unityA, l_inv); float d = fabsf(l - NOMINAL_GRAVITY); float p; if (fusion->flags & FUSION_USE_GYRO) { float fc = 0; // Enable faster convergence if (ACC_TRUSTWORTHY(d)) { struct Vec3 aa; mat33Apply(&aa, &R, &fusion->Ba); float cos_err = vec3Dot(&aa, &unityA); cos_err = cos_err < (1.f - ACC_COS_CONV_FACTOR) ? (1.f - ACC_COS_CONV_FACTOR) : cos_err; fc = (1.f - cos_err) * (1.0f / ACC_COS_CONV_FACTOR * ACC_COS_CONV_LIMIT); } p = fusion->param.acc_stdev * expf(3 * d - fc); } else { // Adaptive acc weighting (trust acc less as it deviates from nominal g // more), acc_stdev *= e(sqrt(| |acc| - g_nominal|)) // // The weighting equation comes from heuristics. p = fusion->param.acc_stdev * expf(sqrtf(d)); } fusionUpdate(fusion, &unityA, &fusion->Ba, p); return 0; } #define MAG_COS_CONV_FACTOR 0.02f #define MAG_COS_CONV_LIMIT 3.5f #define MAG_STDEV_REDUCTION 0.005f // lower stdev means more trust int fusionHandleMag(struct Fusion *fusion, const struct Vec3 *m, float dT) { if (!fusion_init_complete(fusion, MAG, m, 0.0f /* dT */)) { return -EINVAL; } float magFieldSq = vec3NormSquared(m); if (magFieldSq > MAX_VALID_MAGNETIC_FIELD_SQ || magFieldSq < MIN_VALID_MAGNETIC_FIELD_SQ) { fusionSetMagTrust(fusion, NORMAL); fusion->lastMagInvalid = true; return -EINVAL; } struct Mat33 R; fusionGetRotationMatrix(fusion, &R); struct Vec3 up; mat33Apply(&up, &R, &fusion->Ba); struct Vec3 east; vec3Cross(&east, m, &up); if (vec3NormSquared(&east) < MIN_VALID_CROSS_PRODUCT_MAG_SQ) { fusionSetMagTrust(fusion, NORMAL); fusion->lastMagInvalid = true; return -EINVAL; } if (fusion->lastMagInvalid) { fusion->lastMagInvalid = false; fusionSetMagTrust(fusion, BACK_TO_VALID); } struct Vec3 north; vec3Cross(&north, &up, &east); float invNorm = 1.0f / vec3Norm(&north); vec3ScalarMul(&north, invNorm); float p = fusion->param.mag_stdev; if (fusion->flags & FUSION_USE_GYRO) { struct Vec3 mm; mat33Apply(&mm, &R, &fusion->Bm); float cos_err = vec3Dot(&mm, &north); if (fusion->trustedMagDuration > 0) { // if the trust mag time period is not finished if (cos_err < (1.f - MAG_COS_CONV_FACTOR/4)) { // if the mag direction and the fusion north has not converged, lower the // standard deviation of mag to speed up convergence. p *= MAG_STDEV_REDUCTION; fusion->trustedMagDuration -= dT; } else { // it has converged already, so no need to keep the trust period any longer fusionSetMagTrust(fusion, NORMAL); } } else { cos_err = cos_err < (1.f - MAG_COS_CONV_FACTOR) ? (1.f - MAG_COS_CONV_FACTOR) : cos_err; float fc; fc = (1.f - cos_err) * (1.0f / MAG_COS_CONV_FACTOR * MAG_COS_CONV_LIMIT); p *= expf(-fc); } } fusionUpdate(fusion, &north, &fusion->Bm, p); return 0; } void fusionSetMagTrust(struct Fusion *fusion, int mode) { switch(mode) { case NORMAL: fusion->trustedMagDuration = 0; // disable break; case INITIALIZATION: case BACK_TO_VALID: fusion->trustedMagDuration = 0; // no special treatment for these two break; case MANUAL_MAG_CAL: fusion->trustedMagDuration = TRUST_DURATION_MANUAL_MAG_CAL; break; default: fusion->trustedMagDuration = 0; // by default it is disable break; } } void fusionGetAttitude(const struct Fusion *fusion, struct Vec4 *attitude) { *attitude = fusion->x0; } void fusionGetBias(const struct Fusion *fusion, struct Vec3 *bias) { *bias = fusion->x1; } void fusionGetRotationMatrix(const struct Fusion *fusion, struct Mat33 *R) { quatToMatrix(R, &fusion->x0); }