/* * Copyright (C) 2018 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "neuralnetworks_hidl_hal_test" #include "VtsHalNeuralnetworks.h" #include "1.0/Callbacks.h" namespace android::hardware::neuralnetworks::V1_1::vts::functional { using V1_0::DeviceStatus; using V1_0::ErrorStatus; using V1_0::Operand; using V1_0::OperandLifeTime; using V1_0::OperandType; using V1_0::implementation::PreparedModelCallback; // create device test TEST_P(NeuralnetworksHidlTest, CreateDevice) {} // status test TEST_P(NeuralnetworksHidlTest, StatusTest) { Return status = kDevice->getStatus(); ASSERT_TRUE(status.isOk()); EXPECT_EQ(DeviceStatus::AVAILABLE, static_cast(status)); } // initialization TEST_P(NeuralnetworksHidlTest, GetCapabilitiesTest) { Return ret = kDevice->getCapabilities_1_1([](ErrorStatus status, const Capabilities& capabilities) { EXPECT_EQ(ErrorStatus::NONE, status); EXPECT_LT(0.0f, capabilities.float32Performance.execTime); EXPECT_LT(0.0f, capabilities.float32Performance.powerUsage); EXPECT_LT(0.0f, capabilities.quantized8Performance.execTime); EXPECT_LT(0.0f, capabilities.quantized8Performance.powerUsage); EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.execTime); EXPECT_LT(0.0f, capabilities.relaxedFloat32toFloat16Performance.powerUsage); }); EXPECT_TRUE(ret.isOk()); } // detect cycle TEST_P(NeuralnetworksHidlTest, CycleTest) { // opnd0 = TENSOR_FLOAT32 // model input // opnd1 = TENSOR_FLOAT32 // model input // opnd2 = INT32 // model input // opnd3 = ADD(opnd0, opnd4, opnd2) // opnd4 = ADD(opnd1, opnd3, opnd2) // opnd5 = ADD(opnd4, opnd0, opnd2) // model output // // +-----+ // | | // v | // 3 = ADD(0, 4, 2) | // | | // +----------+ | // | | // v | // 4 = ADD(1, 3, 2) | // | | // +----------------+ // | // | // +-------+ // | // v // 5 = ADD(4, 0, 2) const std::vector operands = { { // operands[0] .type = OperandType::TENSOR_FLOAT32, .dimensions = {1}, .numberOfConsumers = 2, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::MODEL_INPUT, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, { // operands[1] .type = OperandType::TENSOR_FLOAT32, .dimensions = {1}, .numberOfConsumers = 1, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::MODEL_INPUT, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, { // operands[2] .type = OperandType::INT32, .dimensions = {}, .numberOfConsumers = 3, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::MODEL_INPUT, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, { // operands[3] .type = OperandType::TENSOR_FLOAT32, .dimensions = {1}, .numberOfConsumers = 1, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::TEMPORARY_VARIABLE, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, { // operands[4] .type = OperandType::TENSOR_FLOAT32, .dimensions = {1}, .numberOfConsumers = 2, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::TEMPORARY_VARIABLE, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, { // operands[5] .type = OperandType::TENSOR_FLOAT32, .dimensions = {1}, .numberOfConsumers = 0, .scale = 0.0f, .zeroPoint = 0, .lifetime = OperandLifeTime::MODEL_OUTPUT, .location = {.poolIndex = 0, .offset = 0, .length = 0}, }, }; const std::vector operations = { {.type = OperationType::ADD, .inputs = {0, 4, 2}, .outputs = {3}}, {.type = OperationType::ADD, .inputs = {1, 3, 2}, .outputs = {4}}, {.type = OperationType::ADD, .inputs = {4, 0, 2}, .outputs = {5}}, }; const Model model = { .operands = operands, .operations = operations, .inputIndexes = {0, 1, 2}, .outputIndexes = {5}, .operandValues = {}, .pools = {}, }; // ensure that getSupportedOperations_1_1() checks model validity ErrorStatus supportedOpsErrorStatus = ErrorStatus::GENERAL_FAILURE; Return supportedOpsReturn = kDevice->getSupportedOperations_1_1( model, [&model, &supportedOpsErrorStatus](ErrorStatus status, const hidl_vec& supported) { supportedOpsErrorStatus = status; if (status == ErrorStatus::NONE) { ASSERT_EQ(supported.size(), model.operations.size()); } }); ASSERT_TRUE(supportedOpsReturn.isOk()); ASSERT_EQ(supportedOpsErrorStatus, ErrorStatus::INVALID_ARGUMENT); // ensure that prepareModel_1_1() checks model validity sp preparedModelCallback = new PreparedModelCallback; Return prepareLaunchReturn = kDevice->prepareModel_1_1( model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback); ASSERT_TRUE(prepareLaunchReturn.isOk()); // Note that preparation can fail for reasons other than an // invalid model (invalid model should result in // INVALID_ARGUMENT) -- for example, perhaps not all // operations are supported, or perhaps the device hit some // kind of capacity limit. EXPECT_NE(prepareLaunchReturn, ErrorStatus::NONE); EXPECT_NE(preparedModelCallback->getStatus(), ErrorStatus::NONE); EXPECT_EQ(preparedModelCallback->getPreparedModel(), nullptr); } } // namespace android::hardware::neuralnetworks::V1_1::vts::functional