/* * Copyright (C) 2019 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "GeneratedTestHarness.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "1.0/Utils.h" #include "1.3/Callbacks.h" #include "1.3/Utils.h" #include "ExecutionBurstController.h" #include "MemoryUtils.h" #include "TestHarness.h" #include "Utils.h" #include "VtsHalNeuralnetworks.h" namespace android::hardware::neuralnetworks::V1_3::vts::functional { using namespace test_helper; using hidl::memory::V1_0::IMemory; using implementation::ExecutionCallback; using implementation::PreparedModelCallback; using V1_0::DataLocation; using V1_0::RequestArgument; using V1_1::ExecutionPreference; using V1_2::Constant; using V1_2::MeasureTiming; using V1_2::OutputShape; using V1_2::SymmPerChannelQuantParams; using V1_2::Timing; using HidlToken = hidl_array(Constant::BYTE_SIZE_OF_CACHE_TOKEN)>; namespace { enum class OutputType { FULLY_SPECIFIED, UNSPECIFIED, INSUFFICIENT, MISSED_DEADLINE }; enum class IOType { INPUT, OUTPUT }; struct TestConfig { Executor executor; MeasureTiming measureTiming; OutputType outputType; MemoryType memoryType; // `reportSkipping` indicates if a test should print an info message in case // it is skipped. The field is set to true by default and is set to false in // quantization coupling tests to suppress skipping a test bool reportSkipping; TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType, MemoryType memoryType) : executor(executor), measureTiming(measureTiming), outputType(outputType), memoryType(memoryType), reportSkipping(true) {} TestConfig(Executor executor, MeasureTiming measureTiming, OutputType outputType, MemoryType memoryType, bool reportSkipping) : executor(executor), measureTiming(measureTiming), outputType(outputType), memoryType(memoryType), reportSkipping(reportSkipping) {} }; class DeviceMemoryAllocator { public: DeviceMemoryAllocator(const sp& device, const sp& preparedModel, const TestModel& testModel) : kDevice(device), kPreparedModel(preparedModel), kTestModel(testModel) {} // Allocate device memory for a target input/output operand. // Return {IBuffer object, token} if successful. // Return {nullptr, 0} if device memory is not supported. template std::pair, uint32_t> allocate(uint32_t index) { std::pair, uint32_t> buffer; allocateInternal(index, &buffer); return buffer; } private: template void allocateInternal(uint32_t index, std::pair, uint32_t>* result) { ASSERT_NE(result, nullptr); // Prepare arguments. BufferRole role = {.modelIndex = 0, .ioIndex = index, .frequency = 1.0f}; hidl_vec inputRoles, outputRoles; if constexpr (ioType == IOType::INPUT) { inputRoles = {role}; } else { outputRoles = {role}; } // Allocate device memory. ErrorStatus status; sp buffer; uint32_t token; auto cb = [&status, &buffer, &token](ErrorStatus error, const sp& buf, uint32_t tok) { status = error; buffer = buf; token = tok; }; const auto ret = kDevice->allocate({}, {kPreparedModel}, inputRoles, outputRoles, cb); // Check allocation results. ASSERT_TRUE(ret.isOk()); if (status == ErrorStatus::NONE) { ASSERT_NE(buffer, nullptr); ASSERT_GT(token, 0); } else { ASSERT_EQ(status, ErrorStatus::GENERAL_FAILURE); ASSERT_EQ(buffer, nullptr); ASSERT_EQ(token, 0); } // Initialize input data from TestBuffer. if constexpr (ioType == IOType::INPUT) { if (buffer != nullptr) { // TestBuffer -> Shared memory. const auto& testBuffer = kTestModel.main.operands[kTestModel.main.inputIndexes[index]].data; ASSERT_GT(testBuffer.size(), 0); hidl_memory tmp = nn::allocateSharedMemory(testBuffer.size()); sp inputMemory = mapMemory(tmp); ASSERT_NE(inputMemory.get(), nullptr); uint8_t* inputPtr = static_cast(static_cast(inputMemory->getPointer())); ASSERT_NE(inputPtr, nullptr); const uint8_t* begin = testBuffer.get(); const uint8_t* end = begin + testBuffer.size(); std::copy(begin, end, inputPtr); // Shared memory -> IBuffer. auto ret = buffer->copyFrom(tmp, {}); ASSERT_TRUE(ret.isOk()); ASSERT_EQ(static_cast(ret), ErrorStatus::NONE); } } *result = {std::move(buffer), token}; } const sp kDevice; const sp kPreparedModel; const TestModel& kTestModel; }; Subgraph createSubgraph(const TestSubgraph& testSubgraph, uint32_t* constCopySize, std::vector* constCopies, uint32_t* constRefSize, std::vector* constReferences) { CHECK(constCopySize != nullptr); CHECK(constCopies != nullptr); CHECK(constRefSize != nullptr); CHECK(constReferences != nullptr); // Operands. hidl_vec operands(testSubgraph.operands.size()); for (uint32_t i = 0; i < testSubgraph.operands.size(); i++) { const auto& op = testSubgraph.operands[i]; DataLocation loc = {}; if (op.lifetime == TestOperandLifeTime::CONSTANT_COPY) { loc = { .poolIndex = 0, .offset = *constCopySize, .length = static_cast(op.data.size()), }; constCopies->push_back(&op.data); *constCopySize += op.data.alignedSize(); } else if (op.lifetime == TestOperandLifeTime::CONSTANT_REFERENCE) { loc = { .poolIndex = 0, .offset = *constRefSize, .length = static_cast(op.data.size()), }; constReferences->push_back(&op.data); *constRefSize += op.data.alignedSize(); } else if (op.lifetime == TestOperandLifeTime::SUBGRAPH) { loc = { .poolIndex = 0, .offset = *op.data.get(), .length = 0, }; } V1_2::Operand::ExtraParams extraParams; if (op.type == TestOperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL) { extraParams.channelQuant(SymmPerChannelQuantParams{ .scales = op.channelQuant.scales, .channelDim = op.channelQuant.channelDim}); } operands[i] = {.type = static_cast(op.type), .dimensions = op.dimensions, .numberOfConsumers = op.numberOfConsumers, .scale = op.scale, .zeroPoint = op.zeroPoint, .lifetime = static_cast(op.lifetime), .location = loc, .extraParams = std::move(extraParams)}; } // Operations. hidl_vec operations(testSubgraph.operations.size()); std::transform(testSubgraph.operations.begin(), testSubgraph.operations.end(), operations.begin(), [](const TestOperation& op) -> Operation { return {.type = static_cast(op.type), .inputs = op.inputs, .outputs = op.outputs}; }); return {.operands = std::move(operands), .operations = std::move(operations), .inputIndexes = testSubgraph.inputIndexes, .outputIndexes = testSubgraph.outputIndexes}; } void copyTestBuffers(const std::vector& buffers, uint8_t* output) { uint32_t offset = 0; for (const TestBuffer* buffer : buffers) { const uint8_t* begin = buffer->get(); const uint8_t* end = begin + buffer->size(); std::copy(begin, end, output + offset); offset += buffer->alignedSize(); } } } // namespace void waitForSyncFence(int syncFd) { constexpr int kInfiniteTimeout = -1; ASSERT_GT(syncFd, 0); int r = sync_wait(syncFd, kInfiniteTimeout); ASSERT_GE(r, 0); } Model createModel(const TestModel& testModel) { uint32_t constCopySize = 0; uint32_t constRefSize = 0; std::vector constCopies; std::vector constReferences; Subgraph mainSubgraph = createSubgraph(testModel.main, &constCopySize, &constCopies, &constRefSize, &constReferences); hidl_vec refSubgraphs(testModel.referenced.size()); std::transform(testModel.referenced.begin(), testModel.referenced.end(), refSubgraphs.begin(), [&constCopySize, &constCopies, &constRefSize, &constReferences](const TestSubgraph& testSubgraph) { return createSubgraph(testSubgraph, &constCopySize, &constCopies, &constRefSize, &constReferences); }); // Constant copies. hidl_vec operandValues(constCopySize); copyTestBuffers(constCopies, operandValues.data()); // Shared memory. hidl_vec pools = {}; if (constRefSize > 0) { hidl_vec_push_back(&pools, nn::allocateSharedMemory(constRefSize)); CHECK_NE(pools[0].size(), 0u); // load data sp mappedMemory = mapMemory(pools[0]); CHECK(mappedMemory.get() != nullptr); uint8_t* mappedPtr = reinterpret_cast(static_cast(mappedMemory->getPointer())); CHECK(mappedPtr != nullptr); copyTestBuffers(constReferences, mappedPtr); } return {.main = std::move(mainSubgraph), .referenced = std::move(refSubgraphs), .operandValues = std::move(operandValues), .pools = std::move(pools), .relaxComputationFloat32toFloat16 = testModel.isRelaxed}; } static bool isOutputSizeGreaterThanOne(const TestModel& testModel, uint32_t index) { const auto byteSize = testModel.main.operands[testModel.main.outputIndexes[index]].data.size(); return byteSize > 1u; } static void makeOutputInsufficientSize(uint32_t outputIndex, Request* request) { auto& length = request->outputs[outputIndex].location.length; ASSERT_GT(length, 1u); length -= 1u; } static void makeOutputDimensionsUnspecified(Model* model) { for (auto i : model->main.outputIndexes) { auto& dims = model->main.operands[i].dimensions; std::fill(dims.begin(), dims.end(), 0); } } class ExecutionContextV1_3 { public: ExecutionContextV1_3(sp device, sp preparedModel) : kDevice(std::move(device)), kPreparedModel(std::move(preparedModel)) {} std::optional createRequest(const TestModel& testModel, MemoryType memoryType); std::vector getOutputBuffers(const TestModel& testModel, const Request& request) const; private: // Get a TestBuffer with data copied from an IBuffer object. void getBuffer(const sp& buffer, size_t size, TestBuffer* testBuffer) const; static constexpr uint32_t kInputPoolIndex = 0; static constexpr uint32_t kOutputPoolIndex = 1; static constexpr uint32_t kDeviceMemoryBeginIndex = 2; const sp kDevice; const sp kPreparedModel; std::unique_ptr mInputMemory, mOutputMemory; std::vector> mBuffers; }; std::optional ExecutionContextV1_3::createRequest(const TestModel& testModel, MemoryType memoryType) { // Memory pools are organized as: // - 0: Input shared memory pool // - 1: Output shared memory pool // - [2, 2+i): Input device memories // - [2+i, 2+i+o): Output device memories DeviceMemoryAllocator allocator(kDevice, kPreparedModel, testModel); std::vector tokens; mBuffers.clear(); // Model inputs. hidl_vec inputs(testModel.main.inputIndexes.size()); size_t inputSize = 0; for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) { const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]]; if (op.data.size() == 0) { // Omitted input. inputs[i] = {.hasNoValue = true}; continue; } else if (memoryType == MemoryType::DEVICE) { SCOPED_TRACE("Input index = " + std::to_string(i)); auto [buffer, token] = allocator.allocate(i); if (buffer != nullptr) { DataLocation loc = {.poolIndex = static_cast(mBuffers.size() + kDeviceMemoryBeginIndex)}; mBuffers.push_back(std::move(buffer)); tokens.push_back(token); inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}}; continue; } } // Reserve shared memory for input. DataLocation loc = {.poolIndex = kInputPoolIndex, .offset = static_cast(inputSize), .length = static_cast(op.data.size())}; inputSize += op.data.alignedSize(); inputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}}; } // Model outputs. hidl_vec outputs(testModel.main.outputIndexes.size()); size_t outputSize = 0; for (uint32_t i = 0; i < testModel.main.outputIndexes.size(); i++) { const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]]; if (memoryType == MemoryType::DEVICE) { SCOPED_TRACE("Output index = " + std::to_string(i)); auto [buffer, token] = allocator.allocate(i); if (buffer != nullptr) { DataLocation loc = {.poolIndex = static_cast(mBuffers.size() + kDeviceMemoryBeginIndex)}; mBuffers.push_back(std::move(buffer)); tokens.push_back(token); outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}}; continue; } } // In the case of zero-sized output, we should at least provide a one-byte buffer. // This is because zero-sized tensors are only supported internally to the driver, or // reported in output shapes. It is illegal for the client to pre-specify a zero-sized // tensor as model output. Otherwise, we will have two semantic conflicts: // - "Zero dimension" conflicts with "unspecified dimension". // - "Omitted operand buffer" conflicts with "zero-sized operand buffer". size_t bufferSize = std::max(op.data.size(), 1); // Reserve shared memory for output. DataLocation loc = {.poolIndex = kOutputPoolIndex, .offset = static_cast(outputSize), .length = static_cast(bufferSize)}; outputSize += op.data.size() == 0 ? TestBuffer::kAlignment : op.data.alignedSize(); outputs[i] = {.hasNoValue = false, .location = loc, .dimensions = {}}; } if (memoryType == MemoryType::DEVICE && mBuffers.empty()) { return std::nullopt; } // Memory pools. hidl_vec pools(kDeviceMemoryBeginIndex + mBuffers.size()); if (memoryType == MemoryType::BLOB_AHWB) { mInputMemory = TestBlobAHWB::create(std::max(inputSize, 1)); mOutputMemory = TestBlobAHWB::create(std::max(outputSize, 1)); } else { mInputMemory = TestAshmem::create(std::max(inputSize, 1)); mOutputMemory = TestAshmem::create(std::max(outputSize, 1)); } EXPECT_NE(mInputMemory, nullptr); EXPECT_NE(mOutputMemory, nullptr); pools[kInputPoolIndex].hidlMemory(mInputMemory->getHidlMemory()); pools[kOutputPoolIndex].hidlMemory(mOutputMemory->getHidlMemory()); for (uint32_t i = 0; i < mBuffers.size(); i++) { pools[kDeviceMemoryBeginIndex + i].token(tokens[i]); } // Copy input data to the input shared memory pool. uint8_t* inputPtr = mInputMemory->getPointer(); for (uint32_t i = 0; i < testModel.main.inputIndexes.size(); i++) { if (!inputs[i].hasNoValue && inputs[i].location.poolIndex == kInputPoolIndex) { const auto& op = testModel.main.operands[testModel.main.inputIndexes[i]]; const uint8_t* begin = op.data.get(); const uint8_t* end = begin + op.data.size(); std::copy(begin, end, inputPtr + inputs[i].location.offset); } } return Request{ .inputs = std::move(inputs), .outputs = std::move(outputs), .pools = std::move(pools)}; } std::vector ExecutionContextV1_3::getOutputBuffers(const TestModel& testModel, const Request& request) const { // Copy out output results. uint8_t* outputPtr = mOutputMemory->getPointer(); std::vector outputBuffers; for (uint32_t i = 0; i < request.outputs.size(); i++) { const auto& outputLoc = request.outputs[i].location; if (outputLoc.poolIndex == kOutputPoolIndex) { outputBuffers.emplace_back(outputLoc.length, outputPtr + outputLoc.offset); } else { const auto& op = testModel.main.operands[testModel.main.outputIndexes[i]]; if (op.data.size() == 0) { outputBuffers.emplace_back(0, nullptr); } else { SCOPED_TRACE("Output index = " + std::to_string(i)); const uint32_t bufferIndex = outputLoc.poolIndex - kDeviceMemoryBeginIndex; TestBuffer buffer; getBuffer(mBuffers[bufferIndex], op.data.size(), &buffer); outputBuffers.push_back(std::move(buffer)); } } } return outputBuffers; } // Get a TestBuffer with data copied from an IBuffer object. void ExecutionContextV1_3::getBuffer(const sp& buffer, size_t size, TestBuffer* testBuffer) const { // IBuffer -> Shared memory. hidl_memory tmp = nn::allocateSharedMemory(size); const auto ret = buffer->copyTo(tmp); ASSERT_TRUE(ret.isOk()); ASSERT_EQ(static_cast(ret), ErrorStatus::NONE); // Shared memory -> TestBuffer. sp outputMemory = mapMemory(tmp); ASSERT_NE(outputMemory.get(), nullptr); uint8_t* outputPtr = static_cast(static_cast(outputMemory->getPointer())); ASSERT_NE(outputPtr, nullptr); ASSERT_NE(testBuffer, nullptr); *testBuffer = TestBuffer(size, outputPtr); } static bool hasZeroSizedOutput(const TestModel& testModel) { return std::any_of(testModel.main.outputIndexes.begin(), testModel.main.outputIndexes.end(), [&testModel](uint32_t index) { return testModel.main.operands[index].data.size() == 0; }); } static Return ExecutePreparedModel(const sp& preparedModel, const Request& request, MeasureTiming measure, const OptionalTimeoutDuration& loopTimeoutDuration, sp& callback) { return preparedModel->execute_1_3(request, measure, {}, loopTimeoutDuration, callback); } static Return ExecutePreparedModel(const sp& preparedModel, const Request& request, MeasureTiming measure, const OptionalTimeoutDuration& loopTimeoutDuration, hidl_vec* outputShapes, Timing* timing) { ErrorStatus result; Return ret = preparedModel->executeSynchronously_1_3( request, measure, {}, loopTimeoutDuration, [&result, outputShapes, timing](ErrorStatus error, const hidl_vec& shapes, const Timing& time) { result = error; *outputShapes = shapes; *timing = time; }); if (!ret.isOk()) { return ErrorStatus::GENERAL_FAILURE; } return result; } static std::shared_ptr<::android::nn::ExecutionBurstController> CreateBurst( const sp& preparedModel) { return android::nn::ExecutionBurstController::create(preparedModel, std::chrono::microseconds{0}); } void EvaluatePreparedModel(const sp& device, const sp& preparedModel, const TestModel& testModel, const TestConfig& testConfig, bool* skipped = nullptr) { if (skipped != nullptr) { *skipped = false; } // If output0 does not have size larger than one byte, we can not test with insufficient buffer. if (testConfig.outputType == OutputType::INSUFFICIENT && !isOutputSizeGreaterThanOne(testModel, 0)) { return; } ExecutionContextV1_3 context(device, preparedModel); auto maybeRequest = context.createRequest(testModel, testConfig.memoryType); // Skip if testing memory domain but no device memory has been allocated. if (!maybeRequest.has_value()) { return; } Request request = std::move(maybeRequest.value()); constexpr uint32_t kInsufficientOutputIndex = 0; if (testConfig.outputType == OutputType::INSUFFICIENT) { makeOutputInsufficientSize(kInsufficientOutputIndex, &request); } OptionalTimeoutDuration loopTimeoutDuration; // OutputType::MISSED_DEADLINE is only used by // TestKind::INTINITE_LOOP_TIMEOUT tests to verify that an infinite loop is // aborted after a timeout. if (testConfig.outputType == OutputType::MISSED_DEADLINE) { // Override the default loop timeout duration with a small value to // speed up test execution. constexpr uint64_t kMillisecond = 1'000'000; loopTimeoutDuration.nanoseconds(1 * kMillisecond); } ErrorStatus executionStatus; hidl_vec outputShapes; Timing timing; switch (testConfig.executor) { case Executor::ASYNC: { SCOPED_TRACE("asynchronous"); // launch execution sp executionCallback = new ExecutionCallback(); Return executionLaunchStatus = ExecutePreparedModel(preparedModel, request, testConfig.measureTiming, loopTimeoutDuration, executionCallback); ASSERT_TRUE(executionLaunchStatus.isOk()); EXPECT_EQ(ErrorStatus::NONE, static_cast(executionLaunchStatus)); // retrieve execution status executionCallback->wait(); executionStatus = executionCallback->getStatus(); outputShapes = executionCallback->getOutputShapes(); timing = executionCallback->getTiming(); break; } case Executor::SYNC: { SCOPED_TRACE("synchronous"); // execute Return executionReturnStatus = ExecutePreparedModel(preparedModel, request, testConfig.measureTiming, loopTimeoutDuration, &outputShapes, &timing); ASSERT_TRUE(executionReturnStatus.isOk()); executionStatus = static_cast(executionReturnStatus); break; } case Executor::BURST: { // TODO(butlermichael): Check if we need to test burst in V1_3 if the interface remains // V1_2. SCOPED_TRACE("burst"); // check compliance ASSERT_TRUE(nn::compliantWithV1_0(request)); V1_0::Request request10 = nn::convertToV1_0(request); // create burst const std::shared_ptr<::android::nn::ExecutionBurstController> controller = CreateBurst(preparedModel); ASSERT_NE(nullptr, controller.get()); // create memory keys std::vector keys(request10.pools.size()); for (size_t i = 0; i < keys.size(); ++i) { keys[i] = reinterpret_cast(&request10.pools[i]); } // execute burst int n; std::tie(n, outputShapes, timing, std::ignore) = controller->compute(request10, testConfig.measureTiming, keys); executionStatus = nn::convertResultCodeToErrorStatus(n); break; } case Executor::FENCED: { SCOPED_TRACE("fenced"); ErrorStatus result; hidl_handle syncFenceHandle; sp fencedCallback; auto callbackFunc = [&result, &syncFenceHandle, &fencedCallback]( ErrorStatus error, const hidl_handle& handle, const sp& callback) { result = error; syncFenceHandle = handle; fencedCallback = callback; }; Return ret = preparedModel->executeFenced(request, {}, testConfig.measureTiming, {}, loopTimeoutDuration, {}, callbackFunc); ASSERT_TRUE(ret.isOk()); if (result != ErrorStatus::NONE) { ASSERT_EQ(syncFenceHandle.getNativeHandle(), nullptr); ASSERT_EQ(fencedCallback, nullptr); executionStatus = result; timing = {UINT64_MAX, UINT64_MAX}; } else if (syncFenceHandle.getNativeHandle()) { // If a sync fence is returned, try start another run waiting for the sync fence. ret = preparedModel->executeFenced(request, {syncFenceHandle}, testConfig.measureTiming, {}, loopTimeoutDuration, {}, callbackFunc); ASSERT_TRUE(ret.isOk()); ASSERT_EQ(result, ErrorStatus::NONE); waitForSyncFence(syncFenceHandle.getNativeHandle()->data[0]); } if (result == ErrorStatus::NONE) { ASSERT_NE(fencedCallback, nullptr); Return ret = fencedCallback->getExecutionInfo( [&executionStatus, &timing](ErrorStatus error, Timing t, Timing) { executionStatus = error; timing = t; }); ASSERT_TRUE(ret.isOk()); } break; } } if (testConfig.outputType != OutputType::FULLY_SPECIFIED && executionStatus == ErrorStatus::GENERAL_FAILURE) { if (skipped != nullptr) { *skipped = true; } if (!testConfig.reportSkipping) { return; } LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot " "execute model that it does not support."; std::cout << "[ ] Early termination of test because vendor service cannot " "execute model that it does not support." << std::endl; GTEST_SKIP(); } if (testConfig.measureTiming == MeasureTiming::NO) { EXPECT_EQ(UINT64_MAX, timing.timeOnDevice); EXPECT_EQ(UINT64_MAX, timing.timeInDriver); } else { if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) { EXPECT_LE(timing.timeOnDevice, timing.timeInDriver); } } switch (testConfig.outputType) { case OutputType::FULLY_SPECIFIED: if (testConfig.executor == Executor::FENCED && hasZeroSizedOutput(testModel)) { // Executor::FENCED does not support zero-sized output. ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionStatus); return; } // If the model output operands are fully specified, outputShapes must be either // either empty, or have the same number of elements as the number of outputs. ASSERT_EQ(ErrorStatus::NONE, executionStatus); ASSERT_TRUE(outputShapes.size() == 0 || outputShapes.size() == testModel.main.outputIndexes.size()); break; case OutputType::UNSPECIFIED: if (testConfig.executor == Executor::FENCED) { // For Executor::FENCED, the output shape must be fully specified. ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionStatus); return; } // If the model output operands are not fully specified, outputShapes must have // the same number of elements as the number of outputs. ASSERT_EQ(ErrorStatus::NONE, executionStatus); ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size()); break; case OutputType::INSUFFICIENT: if (testConfig.executor == Executor::FENCED) { // For Executor::FENCED, the output shape must be fully specified. ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, executionStatus); return; } ASSERT_EQ(ErrorStatus::OUTPUT_INSUFFICIENT_SIZE, executionStatus); ASSERT_EQ(outputShapes.size(), testModel.main.outputIndexes.size()); // Check that all returned output dimensions are at least as fully specified as the // union of the information about the corresponding operand in the model and in the // request. In this test, all model outputs have known rank with all dimensions // unspecified, and no dimensional information is provided in the request. for (uint32_t i = 0; i < outputShapes.size(); i++) { ASSERT_EQ(outputShapes[i].isSufficient, i != kInsufficientOutputIndex); const auto& actual = outputShapes[i].dimensions; const auto& golden = testModel.main.operands[testModel.main.outputIndexes[i]].dimensions; ASSERT_EQ(actual.size(), golden.size()); for (uint32_t j = 0; j < actual.size(); j++) { if (actual[j] == 0) continue; EXPECT_EQ(actual[j], golden[j]) << "index: " << j; } } return; case OutputType::MISSED_DEADLINE: ASSERT_TRUE(executionStatus == ErrorStatus::MISSED_DEADLINE_TRANSIENT || executionStatus == ErrorStatus::MISSED_DEADLINE_PERSISTENT) << "executionStatus = " << executionStatus; return; } // Go through all outputs, check returned output shapes. for (uint32_t i = 0; i < outputShapes.size(); i++) { EXPECT_TRUE(outputShapes[i].isSufficient); const auto& expect = testModel.main.operands[testModel.main.outputIndexes[i]].dimensions; const std::vector actual = outputShapes[i].dimensions; EXPECT_EQ(expect, actual); } // Retrieve execution results. const std::vector outputs = context.getOutputBuffers(testModel, request); // We want "close-enough" results. checkResults(testModel, outputs); } void EvaluatePreparedModel(const sp& device, const sp& preparedModel, const TestModel& testModel, TestKind testKind) { std::vector outputTypesList; std::vector measureTimingList; std::vector executorList; std::vector memoryTypeList; switch (testKind) { case TestKind::GENERAL: { outputTypesList = {OutputType::FULLY_SPECIFIED}; measureTimingList = {MeasureTiming::NO, MeasureTiming::YES}; executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST}; memoryTypeList = {MemoryType::ASHMEM}; } break; case TestKind::DYNAMIC_SHAPE: { outputTypesList = {OutputType::UNSPECIFIED, OutputType::INSUFFICIENT}; measureTimingList = {MeasureTiming::NO, MeasureTiming::YES}; executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST, Executor::FENCED}; memoryTypeList = {MemoryType::ASHMEM}; } break; case TestKind::MEMORY_DOMAIN: { outputTypesList = {OutputType::FULLY_SPECIFIED}; measureTimingList = {MeasureTiming::NO}; executorList = {Executor::ASYNC, Executor::SYNC, Executor::FENCED}; memoryTypeList = {MemoryType::BLOB_AHWB, MemoryType::DEVICE}; } break; case TestKind::FENCED_COMPUTE: { outputTypesList = {OutputType::FULLY_SPECIFIED}; measureTimingList = {MeasureTiming::NO, MeasureTiming::YES}; executorList = {Executor::FENCED}; memoryTypeList = {MemoryType::ASHMEM}; } break; case TestKind::QUANTIZATION_COUPLING: { LOG(FATAL) << "Wrong TestKind for EvaluatePreparedModel"; return; } break; case TestKind::INTINITE_LOOP_TIMEOUT: { outputTypesList = {OutputType::MISSED_DEADLINE}; measureTimingList = {MeasureTiming::NO, MeasureTiming::YES}; // Burst does not support V1_3 loop timeout. executorList = {Executor::ASYNC, Executor::SYNC, Executor::FENCED}; memoryTypeList = {MemoryType::ASHMEM}; } break; } for (const OutputType outputType : outputTypesList) { for (const MeasureTiming measureTiming : measureTimingList) { for (const Executor executor : executorList) { for (const MemoryType memoryType : memoryTypeList) { const TestConfig testConfig(executor, measureTiming, outputType, memoryType); EvaluatePreparedModel(device, preparedModel, testModel, testConfig); } } } } } void EvaluatePreparedCoupledModels(const sp& device, const sp& preparedModel, const TestModel& testModel, const sp& preparedCoupledModel, const TestModel& coupledModel) { const std::vector outputTypesList = {OutputType::FULLY_SPECIFIED}; const std::vector measureTimingList = {MeasureTiming::NO, MeasureTiming::YES}; const std::vector executorList = {Executor::ASYNC, Executor::SYNC, Executor::BURST, Executor::FENCED}; for (const OutputType outputType : outputTypesList) { for (const MeasureTiming measureTiming : measureTimingList) { for (const Executor executor : executorList) { const TestConfig testConfig(executor, measureTiming, outputType, MemoryType::ASHMEM, /*reportSkipping=*/false); bool baseSkipped = false; EvaluatePreparedModel(device, preparedModel, testModel, testConfig, &baseSkipped); bool coupledSkipped = false; EvaluatePreparedModel(device, preparedCoupledModel, coupledModel, testConfig, &coupledSkipped); ASSERT_EQ(baseSkipped, coupledSkipped); if (baseSkipped) { LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot " "execute model that it does not support."; std::cout << "[ ] Early termination of test because vendor service " "cannot " "execute model that it does not support." << std::endl; GTEST_SKIP(); } } } } } void Execute(const sp& device, const TestModel& testModel, TestKind testKind) { Model model = createModel(testModel); if (testKind == TestKind::DYNAMIC_SHAPE) { makeOutputDimensionsUnspecified(&model); } sp preparedModel; switch (testKind) { case TestKind::GENERAL: case TestKind::DYNAMIC_SHAPE: case TestKind::MEMORY_DOMAIN: case TestKind::FENCED_COMPUTE: case TestKind::INTINITE_LOOP_TIMEOUT: { createPreparedModel(device, model, &preparedModel); if (preparedModel == nullptr) return; EvaluatePreparedModel(device, preparedModel, testModel, testKind); } break; case TestKind::QUANTIZATION_COUPLING: { ASSERT_TRUE(testModel.hasQuant8CoupledOperands()); createPreparedModel(device, model, &preparedModel, /*reportSkipping*/ false); TestModel signedQuantizedModel = convertQuant8AsymmOperandsToSigned(testModel); sp preparedCoupledModel; createPreparedModel(device, createModel(signedQuantizedModel), &preparedCoupledModel, /*reportSkipping*/ false); // If we couldn't prepare a model with unsigned quantization, we must // fail to prepare a model with signed quantization as well. if (preparedModel == nullptr) { ASSERT_EQ(preparedCoupledModel, nullptr); // If we failed to prepare both of the models, we can safely skip // the test. LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot " "prepare model that it does not support."; std::cout << "[ ] Early termination of test because vendor service cannot " "prepare model that it does not support." << std::endl; GTEST_SKIP(); } ASSERT_NE(preparedCoupledModel, nullptr); EvaluatePreparedCoupledModels(device, preparedModel, testModel, preparedCoupledModel, signedQuantizedModel); } break; } } void GeneratedTestBase::SetUp() { testing::TestWithParam::SetUp(); ASSERT_NE(kDevice, nullptr); } std::vector getNamedModels(const FilterFn& filter) { return TestModelManager::get().getTestModels(filter); } std::vector getNamedModels(const FilterNameFn& filter) { return TestModelManager::get().getTestModels(filter); } std::string printGeneratedTest(const testing::TestParamInfo& info) { const auto& [namedDevice, namedModel] = info.param; return gtestCompliantName(getName(namedDevice) + "_" + getName(namedModel)); } // Tag for the generated tests class GeneratedTest : public GeneratedTestBase {}; // Tag for the dynamic output shape tests class DynamicOutputShapeTest : public GeneratedTest {}; // Tag for the memory domain tests class MemoryDomainTest : public GeneratedTest {}; // Tag for the fenced compute tests class FencedComputeTest : public GeneratedTest {}; // Tag for the dynamic output shape tests class QuantizationCouplingTest : public GeneratedTest {}; // Tag for the loop timeout tests class InfiniteLoopTimeoutTest : public GeneratedTest {}; TEST_P(GeneratedTest, Test) { Execute(kDevice, kTestModel, TestKind::GENERAL); } TEST_P(DynamicOutputShapeTest, Test) { Execute(kDevice, kTestModel, TestKind::DYNAMIC_SHAPE); } TEST_P(MemoryDomainTest, Test) { Execute(kDevice, kTestModel, TestKind::MEMORY_DOMAIN); } TEST_P(FencedComputeTest, Test) { Execute(kDevice, kTestModel, TestKind::FENCED_COMPUTE); } TEST_P(QuantizationCouplingTest, Test) { Execute(kDevice, kTestModel, TestKind::QUANTIZATION_COUPLING); } TEST_P(InfiniteLoopTimeoutTest, Test) { Execute(kDevice, kTestModel, TestKind::INTINITE_LOOP_TIMEOUT); } INSTANTIATE_GENERATED_TEST(GeneratedTest, [](const TestModel& testModel) { return !testModel.expectFailure; }); INSTANTIATE_GENERATED_TEST(DynamicOutputShapeTest, [](const TestModel& testModel) { return !testModel.expectFailure && !testModel.hasScalarOutputs(); }); INSTANTIATE_GENERATED_TEST(MemoryDomainTest, [](const TestModel& testModel) { return !testModel.expectFailure; }); INSTANTIATE_GENERATED_TEST(FencedComputeTest, [](const TestModel& testModel) { return !testModel.expectFailure; }); INSTANTIATE_GENERATED_TEST(QuantizationCouplingTest, [](const TestModel& testModel) { return !testModel.expectFailure && testModel.hasQuant8CoupledOperands() && testModel.main.operations.size() == 1; }); INSTANTIATE_GENERATED_TEST(InfiniteLoopTimeoutTest, [](const TestModel& testModel) { return testModel.isInfiniteLoopTimeoutTest(); }); } // namespace android::hardware::neuralnetworks::V1_3::vts::functional