/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "utils.h" #define BUFFER_SIZE sysconf(_SC_PAGESIZE) namespace android { namespace vintf { static const std::string gConfigPrefix = "android-base-"; static const std::string gConfigSuffix = ".config"; static const std::string gBaseConfig = "android-base.config"; // An input stream with a name. // The input stream may be an actual file, or a stringstream for testing. // It takes ownership on the istream. class NamedIstream { public: NamedIstream(const std::string& name, std::unique_ptr&& stream) : mName(name), mStream(std::move(stream)) {} const std::string& name() const { return mName; } std::istream& stream() { return *mStream; } private: std::string mName; std::unique_ptr mStream; }; /** * Slurps the device manifest file and add build time flag to it. */ class AssembleVintfImpl : public AssembleVintf { using Condition = std::unique_ptr; using ConditionedConfig = std::pair /* configs */>; public: void setFakeEnv(const std::string& key, const std::string& value) { mFakeEnv[key] = value; } std::string getEnv(const std::string& key) const { auto it = mFakeEnv.find(key); if (it != mFakeEnv.end()) { return it->second; } const char* envValue = getenv(key.c_str()); return envValue != nullptr ? std::string(envValue) : std::string(); } // Get environment variable and split with space. std::vector getEnvList(const std::string& key) const { std::vector ret; for (auto&& v : base::Split(getEnv(key), " ")) { v = base::Trim(v); if (!v.empty()) { ret.push_back(v); } } return ret; } template bool getFlag(const std::string& key, T* value, bool log = true) const { std::string envValue = getEnv(key); if (envValue.empty()) { if (log) { std::cerr << "Warning: " << key << " is missing, defaulted to " << (*value) << "." << std::endl; } return true; } if (!parse(envValue, value)) { std::cerr << "Cannot parse " << envValue << "." << std::endl; return false; } return true; } /** * Set *out to environment variable only if *out is a dummy value (i.e. default constructed). * Return false if a fatal error has occurred: * - The environment variable has an unknown format * - The value of the environment variable does not match a predefined variable in the files */ template bool getFlagIfUnset(const std::string& envKey, T* out) const { bool hasExistingValue = !(*out == T{}); bool hasEnvValue = false; T envValue; std::string envStrValue = getEnv(envKey); if (!envStrValue.empty()) { if (!parse(envStrValue, &envValue)) { std::cerr << "Cannot parse " << envValue << "." << std::endl; return false; } hasEnvValue = true; } if (hasExistingValue) { if (hasEnvValue && (*out != envValue)) { std::cerr << "Cannot override existing value " << *out << " with " << envKey << " (which is " << envValue << ")." << std::endl; return false; } return true; } if (hasEnvValue) { *out = envValue; } return true; } bool getBooleanFlag(const std::string& key) const { return getEnv(key) == std::string("true"); } size_t getIntegerFlag(const std::string& key, size_t defaultValue = 0) const { std::string envValue = getEnv(key); if (envValue.empty()) { return defaultValue; } size_t value; if (!base::ParseUint(envValue, &value)) { std::cerr << "Error: " << key << " must be a number." << std::endl; return defaultValue; } return value; } static std::string read(std::basic_istream& is) { std::stringstream ss; ss << is.rdbuf(); return ss.str(); } // Return true if name of file is "android-base.config". This file must be specified // exactly once for each kernel version. These requirements do not have any conditions. static bool isCommonConfig(const std::string& path) { return ::android::base::Basename(path) == gBaseConfig; } // Return true if name of file matches "android-base-foo.config". // Zero or more conditional configs may be specified for each kernel version. These // requirements are conditional on CONFIG_FOO=y. static bool isConditionalConfig(const std::string& path) { auto fname = ::android::base::Basename(path); return ::android::base::StartsWith(fname, gConfigPrefix) && ::android::base::EndsWith(fname, gConfigSuffix); } // Return true for all other file names (i.e. not android-base.config, and not conditional // configs.) // Zero or more conditional configs may be specified for each kernel version. // These requirements do not have any conditions. static bool isExtraCommonConfig(const std::string& path) { return !isCommonConfig(path) && !isConditionalConfig(path); } // nullptr on any error, otherwise the condition. static Condition generateCondition(const std::string& path) { if (!isConditionalConfig(path)) { return nullptr; } auto fname = ::android::base::Basename(path); std::string sub = fname.substr(gConfigPrefix.size(), fname.size() - gConfigPrefix.size() - gConfigSuffix.size()); if (sub.empty()) { return nullptr; // should not happen } for (size_t i = 0; i < sub.size(); ++i) { if (sub[i] == '-') { sub[i] = '_'; continue; } if (isalnum(sub[i])) { sub[i] = toupper(sub[i]); continue; } std::cerr << "'" << fname << "' (in " << path << ") is not a valid kernel config file name. Must match regex: " << "android-base(-[0-9a-zA-Z-]+)?\\" << gConfigSuffix << std::endl; return nullptr; } sub.insert(0, "CONFIG_"); return std::make_unique(std::move(sub), Tristate::YES); } static bool parseFileForKernelConfigs(std::basic_istream& stream, std::vector* out) { KernelConfigParser parser(true /* processComments */, true /* relaxedFormat */); status_t err = parser.processAndFinish(read(stream)); if (err != OK) { std::cerr << parser.error(); return false; } for (auto& configPair : parser.configs()) { out->push_back({}); KernelConfig& config = out->back(); config.first = std::move(configPair.first); if (!parseKernelConfigTypedValue(configPair.second, &config.second)) { std::cerr << "Unknown value type for key = '" << config.first << "', value = '" << configPair.second << "'\n"; return false; } } return true; } static bool parseFilesForKernelConfigs(std::vector* streams, std::vector* out) { out->clear(); ConditionedConfig commonConfig; bool foundCommonConfig = false; bool ret = true; for (auto& namedStream : *streams) { if (isCommonConfig(namedStream.name()) || isExtraCommonConfig(namedStream.name())) { if (!parseFileForKernelConfigs(namedStream.stream(), &commonConfig.second)) { std::cerr << "Failed to generate common configs for file " << namedStream.name(); ret = false; } if (isCommonConfig(namedStream.name())) { foundCommonConfig = true; } } else { Condition condition = generateCondition(namedStream.name()); if (condition == nullptr) { std::cerr << "Failed to generate conditional configs for file " << namedStream.name(); ret = false; } std::vector kernelConfigs; if ((ret &= parseFileForKernelConfigs(namedStream.stream(), &kernelConfigs))) out->emplace_back(std::move(condition), std::move(kernelConfigs)); } } if (!foundCommonConfig) { std::cerr << "No " << gBaseConfig << " is found in these paths:" << std::endl; for (auto& namedStream : *streams) { std::cerr << " " << namedStream.name() << std::endl; } ret = false; } // first element is always common configs (no conditions). out->insert(out->begin(), std::move(commonConfig)); return ret; } std::basic_ostream& out() const { return mOutRef == nullptr ? std::cout : *mOutRef; } // If -c is provided, check it. bool checkDualFile(const HalManifest& manifest, const CompatibilityMatrix& matrix) { if (getBooleanFlag("PRODUCT_ENFORCE_VINTF_MANIFEST")) { std::string error; if (!manifest.checkCompatibility(matrix, &error, mCheckFlags)) { std::cerr << "Not compatible: " << error << std::endl; return false; } } return true; } template using Schemas = std::vector>; using HalManifests = Schemas; using CompatibilityMatrices = Schemas; template void outputInputs(const Schemas& inputs) { out() << "" << std::endl; } // Parse --kernel arguments and write to output manifest. bool setDeviceManifestKernel(HalManifest* manifest) { if (mKernels.empty()) { return true; } if (mKernels.size() > 1) { std::cerr << "Warning: multiple --kernel is specified when building device manifest. " << "Only the first one will be used." << std::endl; } auto& kernelArg = *mKernels.begin(); const auto& kernelVer = kernelArg.first; auto& kernelConfigFiles = kernelArg.second; // addKernel() guarantees that !kernelConfigFiles.empty(). if (kernelConfigFiles.size() > 1) { std::cerr << "Warning: multiple config files are specified in --kernel when building " << "device manfiest. Only the first one will be used." << std::endl; } KernelConfigParser parser(true /* processComments */, false /* relaxedFormat */); status_t err = parser.processAndFinish(read(kernelConfigFiles[0].stream())); if (err != OK) { std::cerr << parser.error(); return false; } // Set version and configs in manifest. auto kernel_info = std::make_optional(); kernel_info->mVersion = kernelVer; kernel_info->mConfigs = parser.configs(); std::string error; if (!manifest->mergeKernel(&kernel_info, &error)) { std::cerr << error << "\n"; return false; } return true; } void inferDeviceManifestKernelFcm(HalManifest* manifest) { // No target FCM version. if (manifest->level() == Level::UNSPECIFIED) return; // target FCM version < R: leave value untouched. if (manifest->level() < Level::R) return; // Inject empty tag if missing. if (!manifest->kernel().has_value()) { manifest->device.mKernel = std::make_optional(); } // Kernel FCM already set. if (manifest->kernel()->level() != Level::UNSPECIFIED) return; manifest->device.mKernel->mLevel = manifest->level(); } bool assembleHalManifest(HalManifests* halManifests) { std::string error; HalManifest* halManifest = &halManifests->front().object; for (auto it = halManifests->begin() + 1; it != halManifests->end(); ++it) { const std::string& path = it->name; HalManifest& manifestToAdd = it->object; if (manifestToAdd.level() != Level::UNSPECIFIED) { if (halManifest->level() == Level::UNSPECIFIED) { halManifest->mLevel = manifestToAdd.level(); } else if (halManifest->level() != manifestToAdd.level()) { std::cerr << "Inconsistent FCM Version in HAL manifests:" << std::endl << " File '" << halManifests->front().name << "' has level " << halManifest->level() << std::endl << " File '" << path << "' has level " << manifestToAdd.level() << std::endl; return false; } } if (!halManifest->addAll(&manifestToAdd, &error)) { std::cerr << "File \"" << path << "\" cannot be added: " << error << std::endl; return false; } } if (halManifest->mType == SchemaType::DEVICE) { if (!getFlagIfUnset("BOARD_SEPOLICY_VERS", &halManifest->device.mSepolicyVersion)) { return false; } if (!setDeviceFcmVersion(halManifest)) { return false; } if (!setDeviceManifestKernel(halManifest)) { return false; } inferDeviceManifestKernelFcm(halManifest); } if (halManifest->mType == SchemaType::FRAMEWORK) { for (auto&& v : getEnvList("PROVIDED_VNDK_VERSIONS")) { halManifest->framework.mVendorNdks.emplace_back(std::move(v)); } for (auto&& v : getEnvList("PLATFORM_SYSTEMSDK_VERSIONS")) { halManifest->framework.mSystemSdk.mVersions.emplace(std::move(v)); } } outputInputs(*halManifests); if (mOutputMatrix) { CompatibilityMatrix generatedMatrix = halManifest->generateCompatibleMatrix(); if (!halManifest->checkCompatibility(generatedMatrix, &error, mCheckFlags)) { std::cerr << "FATAL ERROR: cannot generate a compatible matrix: " << error << std::endl; } out() << "\n" << gCompatibilityMatrixConverter(generatedMatrix, mSerializeFlags); } else { out() << gHalManifestConverter(*halManifest, mSerializeFlags); } out().flush(); if (mCheckFile != nullptr) { CompatibilityMatrix checkMatrix; if (!gCompatibilityMatrixConverter(&checkMatrix, read(*mCheckFile), &error)) { std::cerr << "Cannot parse check file as a compatibility matrix: " << error << std::endl; return false; } if (!checkDualFile(*halManifest, checkMatrix)) { return false; } } return true; } // Parse --kernel arguments and write to output matrix. bool assembleFrameworkCompatibilityMatrixKernels(CompatibilityMatrix* matrix) { for (auto& pair : mKernels) { std::vector conditionedConfigs; if (!parseFilesForKernelConfigs(&pair.second, &conditionedConfigs)) { return false; } for (ConditionedConfig& conditionedConfig : conditionedConfigs) { MatrixKernel kernel(KernelVersion{pair.first}, std::move(conditionedConfig.second)); if (conditionedConfig.first != nullptr) kernel.mConditions.push_back(std::move(*conditionedConfig.first)); std::string error; if (!matrix->addKernel(std::move(kernel), &error)) { std::cerr << "Error:" << error << std::endl; return false; }; } } return true; } bool setDeviceFcmVersion(HalManifest* manifest) { // Not needed for generating empty manifest for DEVICE_FRAMEWORK_COMPATIBILITY_MATRIX_FILE. if (getBooleanFlag("VINTF_IGNORE_TARGET_FCM_VERSION")) { return true; } size_t shippingApiLevel = getIntegerFlag("PRODUCT_SHIPPING_API_LEVEL"); if (manifest->level() != Level::UNSPECIFIED) { return true; } if (!getBooleanFlag("PRODUCT_ENFORCE_VINTF_MANIFEST")) { manifest->mLevel = Level::LEGACY; return true; } // TODO(b/70628538): Do not infer from Shipping API level. if (shippingApiLevel) { std::cerr << "Warning: Shipping FCM Version is inferred from Shipping API level. " << "Declare Shipping FCM Version in device manifest directly." << std::endl; manifest->mLevel = details::convertFromApiLevel(shippingApiLevel); if (manifest->mLevel == Level::UNSPECIFIED) { std::cerr << "Error: Shipping FCM Version cannot be inferred from Shipping API " << "level " << shippingApiLevel << "." << "Declare Shipping FCM Version in device manifest directly." << std::endl; return false; } return true; } // TODO(b/69638851): should be an error if Shipping API level is not defined. // For now, just leave it empty; when framework compatibility matrix is built, // lowest FCM Version is assumed. std::cerr << "Warning: Shipping FCM Version cannot be inferred, because:" << std::endl << " (1) It is not explicitly declared in device manifest;" << std::endl << " (2) PRODUCT_ENFORCE_VINTF_MANIFEST is set to true;" << std::endl << " (3) PRODUCT_SHIPPING_API_LEVEL is undefined." << std::endl << "Assuming 'unspecified' Shipping FCM Version. " << std::endl << "To remove this warning, define 'level' attribute in device manifest." << std::endl; return true; } Level getLowestFcmVersion(const CompatibilityMatrices& matrices) { Level ret = Level::UNSPECIFIED; for (const auto& e : matrices) { if (ret == Level::UNSPECIFIED || ret > e.object.level()) { ret = e.object.level(); } } return ret; } bool assembleCompatibilityMatrix(CompatibilityMatrices* matrices) { std::string error; CompatibilityMatrix* matrix = nullptr; std::unique_ptr checkManifest; std::unique_ptr builtMatrix; if (mCheckFile != nullptr) { checkManifest = std::make_unique(); if (!gHalManifestConverter(checkManifest.get(), read(*mCheckFile), &error)) { std::cerr << "Cannot parse check file as a HAL manifest: " << error << std::endl; return false; } } if (matrices->front().object.mType == SchemaType::DEVICE) { builtMatrix = CompatibilityMatrix::combineDeviceMatrices(matrices, &error); matrix = builtMatrix.get(); if (matrix == nullptr) { std::cerr << error << std::endl; return false; } auto vndkVersion = base::Trim(getEnv("REQUIRED_VNDK_VERSION")); if (!vndkVersion.empty()) { auto& valueInMatrix = matrix->device.mVendorNdk; if (!valueInMatrix.version().empty() && valueInMatrix.version() != vndkVersion) { std::cerr << "Hard-coded version in device compatibility matrix (" << matrices->front().name << "), '" << valueInMatrix.version() << "', does not match value inferred " << "from BOARD_VNDK_VERSION '" << vndkVersion << "'" << std::endl; return false; } valueInMatrix = VendorNdk{std::move(vndkVersion)}; } for (auto&& v : getEnvList("BOARD_SYSTEMSDK_VERSIONS")) { matrix->device.mSystemSdk.mVersions.emplace(std::move(v)); } } if (matrices->front().object.mType == SchemaType::FRAMEWORK) { Level deviceLevel = checkManifest != nullptr ? checkManifest->level() : Level::UNSPECIFIED; if (deviceLevel == Level::UNSPECIFIED) { deviceLevel = getLowestFcmVersion(*matrices); if (checkManifest != nullptr && deviceLevel != Level::UNSPECIFIED) { std::cerr << "Warning: No Target FCM Version for device. Assuming \"" << to_string(deviceLevel) << "\" when building final framework compatibility matrix." << std::endl; } } builtMatrix = CompatibilityMatrix::combine(deviceLevel, matrices, &error); matrix = builtMatrix.get(); if (matrix == nullptr) { std::cerr << error << std::endl; return false; } if (!assembleFrameworkCompatibilityMatrixKernels(matrix)) { return false; } // Add PLATFORM_SEPOLICY_* to sepolicy.sepolicy-version. Remove dupes. std::set sepolicyVersions; auto sepolicyVersionStrings = getEnvList("PLATFORM_SEPOLICY_COMPAT_VERSIONS"); auto currentSepolicyVersionString = getEnv("PLATFORM_SEPOLICY_VERSION"); if (!currentSepolicyVersionString.empty()) { sepolicyVersionStrings.push_back(currentSepolicyVersionString); } for (auto&& s : sepolicyVersionStrings) { Version v; if (!parse(s, &v)) { std::cerr << "Error: unknown sepolicy version '" << s << "' specified by " << (s == currentSepolicyVersionString ? "PLATFORM_SEPOLICY_VERSION" : "PLATFORM_SEPOLICY_COMPAT_VERSIONS") << "."; return false; } sepolicyVersions.insert(v); } for (auto&& v : sepolicyVersions) { matrix->framework.mSepolicy.mSepolicyVersionRanges.emplace_back(v.majorVer, v.minorVer); } if (!getFlagIfUnset("POLICYVERS", &matrix->framework.mSepolicy.mKernelSepolicyVersion)) { return false; } if (!getFlagIfUnset("FRAMEWORK_VBMETA_VERSION", &matrix->framework.mAvbMetaVersion)) { return false; } // Hard-override existing AVB version getFlag("FRAMEWORK_VBMETA_VERSION_OVERRIDE", &matrix->framework.mAvbMetaVersion, false /* log */); } outputInputs(*matrices); out() << gCompatibilityMatrixConverter(*matrix, mSerializeFlags); out().flush(); if (checkManifest != nullptr && !checkDualFile(*checkManifest, *matrix)) { return false; } return true; } enum AssembleStatus { SUCCESS, FAIL_AND_EXIT, TRY_NEXT }; template AssembleStatus tryAssemble(const XmlConverter& converter, const std::string& schemaName, AssembleFunc assemble, std::string* error) { Schemas schemas; Schema schema; if (!converter(&schema, read(mInFiles.front().stream()), error)) { return TRY_NEXT; } auto firstType = schema.type(); schemas.emplace_back(mInFiles.front().name(), std::move(schema)); for (auto it = mInFiles.begin() + 1; it != mInFiles.end(); ++it) { Schema additionalSchema; const std::string& fileName = it->name(); if (!converter(&additionalSchema, read(it->stream()), error)) { std::cerr << "File \"" << fileName << "\" is not a valid " << firstType << " " << schemaName << " (but the first file is a valid " << firstType << " " << schemaName << "). Error: " << *error << std::endl; return FAIL_AND_EXIT; } if (additionalSchema.type() != firstType) { std::cerr << "File \"" << fileName << "\" is a " << additionalSchema.type() << " " << schemaName << " (but a " << firstType << " " << schemaName << " is expected)." << std::endl; return FAIL_AND_EXIT; } schemas.emplace_back(fileName, std::move(additionalSchema)); } return assemble(&schemas) ? SUCCESS : FAIL_AND_EXIT; } bool assemble() override { using std::placeholders::_1; if (mInFiles.empty()) { std::cerr << "Missing input file." << std::endl; return false; } std::string manifestError; auto status = tryAssemble(gHalManifestConverter, "manifest", std::bind(&AssembleVintfImpl::assembleHalManifest, this, _1), &manifestError); if (status == SUCCESS) return true; if (status == FAIL_AND_EXIT) return false; resetInFiles(); std::string matrixError; status = tryAssemble(gCompatibilityMatrixConverter, "compatibility matrix", std::bind(&AssembleVintfImpl::assembleCompatibilityMatrix, this, _1), &matrixError); if (status == SUCCESS) return true; if (status == FAIL_AND_EXIT) return false; std::cerr << "Input file has unknown format." << std::endl << "Error when attempting to convert to manifest: " << manifestError << std::endl << "Error when attempting to convert to compatibility matrix: " << matrixError << std::endl; return false; } std::ostream& setOutputStream(Ostream&& out) override { mOutRef = std::move(out); return *mOutRef; } std::istream& addInputStream(const std::string& name, Istream&& in) override { auto it = mInFiles.emplace(mInFiles.end(), name, std::move(in)); return it->stream(); } std::istream& setCheckInputStream(Istream&& in) override { mCheckFile = std::move(in); return *mCheckFile; } bool hasKernelVersion(const KernelVersion& kernelVer) const override { return mKernels.find(kernelVer) != mKernels.end(); } std::istream& addKernelConfigInputStream(const KernelVersion& kernelVer, const std::string& name, Istream&& in) override { auto&& kernel = mKernels[kernelVer]; auto it = kernel.emplace(kernel.end(), name, std::move(in)); return it->stream(); } void resetInFiles() { for (auto& inFile : mInFiles) { inFile.stream().clear(); inFile.stream().seekg(0); } } void setOutputMatrix() override { mOutputMatrix = true; } bool setHalsOnly() override { if (mHasSetHalsOnlyFlag) { std::cerr << "Error: Cannot set --hals-only with --no-hals." << std::endl; return false; } // Just override it with HALS_ONLY because other flags that modify mSerializeFlags // does not interfere with this (except --no-hals). mSerializeFlags = SerializeFlags::HALS_ONLY; mHasSetHalsOnlyFlag = true; return true; } bool setNoHals() override { if (mHasSetHalsOnlyFlag) { std::cerr << "Error: Cannot set --hals-only with --no-hals." << std::endl; return false; } mSerializeFlags = mSerializeFlags.disableHals(); mHasSetHalsOnlyFlag = true; return true; } bool setNoKernelRequirements() override { mSerializeFlags = mSerializeFlags.disableKernelConfigs().disableKernelMinorRevision(); mCheckFlags = mCheckFlags.disableKernel(); return true; } private: std::vector mInFiles; Ostream mOutRef; Istream mCheckFile; bool mOutputMatrix = false; bool mHasSetHalsOnlyFlag = false; SerializeFlags::Type mSerializeFlags = SerializeFlags::EVERYTHING; std::map> mKernels; std::map mFakeEnv; CheckFlags::Type mCheckFlags = CheckFlags::DEFAULT; }; bool AssembleVintf::openOutFile(const std::string& path) { return static_cast(setOutputStream(std::make_unique(path))) .is_open(); } bool AssembleVintf::openInFile(const std::string& path) { return static_cast(addInputStream(path, std::make_unique(path))) .is_open(); } bool AssembleVintf::openCheckFile(const std::string& path) { return static_cast(setCheckInputStream(std::make_unique(path))) .is_open(); } bool AssembleVintf::addKernel(const std::string& kernelArg) { auto tokens = base::Split(kernelArg, ":"); if (tokens.size() <= 1) { std::cerr << "Unrecognized --kernel option '" << kernelArg << "'" << std::endl; return false; } KernelVersion kernelVer; if (!parse(tokens.front(), &kernelVer)) { std::cerr << "Unrecognized kernel version '" << tokens.front() << "'" << std::endl; return false; } if (hasKernelVersion(kernelVer)) { std::cerr << "Multiple --kernel for " << kernelVer << " is specified." << std::endl; return false; } for (auto it = tokens.begin() + 1; it != tokens.end(); ++it) { bool opened = static_cast( addKernelConfigInputStream(kernelVer, *it, std::make_unique(*it))) .is_open(); if (!opened) { std::cerr << "Cannot open file '" << *it << "'." << std::endl; return false; } } return true; } std::unique_ptr AssembleVintf::newInstance() { return std::make_unique(); } } // namespace vintf } // namespace android