// // Copyright (C) 2018 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/dynamic_partition_control_android.h" #include // NOLINT(build/c++11) - using libsnapshot / liblp API #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "update_engine/cleanup_previous_update_action.h" #include "update_engine/common/boot_control_interface.h" #include "update_engine/common/utils.h" #include "update_engine/dynamic_partition_utils.h" #include "update_engine/payload_consumer/delta_performer.h" using android::base::GetBoolProperty; using android::base::GetProperty; using android::base::Join; using android::dm::DeviceMapper; using android::dm::DmDeviceState; using android::fs_mgr::CreateLogicalPartition; using android::fs_mgr::CreateLogicalPartitionParams; using android::fs_mgr::DestroyLogicalPartition; using android::fs_mgr::Fstab; using android::fs_mgr::MetadataBuilder; using android::fs_mgr::Partition; using android::fs_mgr::PartitionOpener; using android::fs_mgr::SlotSuffixForSlotNumber; using android::snapshot::OptimizeSourceCopyOperation; using android::snapshot::Return; using android::snapshot::SnapshotManager; using android::snapshot::UpdateState; namespace chromeos_update_engine { constexpr char kUseDynamicPartitions[] = "ro.boot.dynamic_partitions"; constexpr char kRetrfoitDynamicPartitions[] = "ro.boot.dynamic_partitions_retrofit"; constexpr char kVirtualAbEnabled[] = "ro.virtual_ab.enabled"; constexpr char kVirtualAbRetrofit[] = "ro.virtual_ab.retrofit"; constexpr char kPostinstallFstabPrefix[] = "ro.postinstall.fstab.prefix"; // Map timeout for dynamic partitions. constexpr std::chrono::milliseconds kMapTimeout{1000}; // Map timeout for dynamic partitions with snapshots. Since several devices // needs to be mapped, this timeout is longer than |kMapTimeout|. constexpr std::chrono::milliseconds kMapSnapshotTimeout{5000}; #ifdef __ANDROID_RECOVERY__ constexpr bool kIsRecovery = true; #else constexpr bool kIsRecovery = false; #endif DynamicPartitionControlAndroid::~DynamicPartitionControlAndroid() { Cleanup(); } static FeatureFlag GetFeatureFlag(const char* enable_prop, const char* retrofit_prop) { bool retrofit = GetBoolProperty(retrofit_prop, false); bool enabled = GetBoolProperty(enable_prop, false); if (retrofit && !enabled) { LOG(ERROR) << retrofit_prop << " is true but " << enable_prop << " is not. These sysprops are inconsistent. Assume that " << enable_prop << " is true from now on."; } if (retrofit) { return FeatureFlag(FeatureFlag::Value::RETROFIT); } if (enabled) { return FeatureFlag(FeatureFlag::Value::LAUNCH); } return FeatureFlag(FeatureFlag::Value::NONE); } DynamicPartitionControlAndroid::DynamicPartitionControlAndroid() : dynamic_partitions_( GetFeatureFlag(kUseDynamicPartitions, kRetrfoitDynamicPartitions)), virtual_ab_(GetFeatureFlag(kVirtualAbEnabled, kVirtualAbRetrofit)) { if (GetVirtualAbFeatureFlag().IsEnabled()) { snapshot_ = SnapshotManager::New(); CHECK(snapshot_ != nullptr) << "Cannot initialize SnapshotManager."; } } FeatureFlag DynamicPartitionControlAndroid::GetDynamicPartitionsFeatureFlag() { return dynamic_partitions_; } FeatureFlag DynamicPartitionControlAndroid::GetVirtualAbFeatureFlag() { return virtual_ab_; } bool DynamicPartitionControlAndroid::OptimizeOperation( const std::string& partition_name, const InstallOperation& operation, InstallOperation* optimized) { switch (operation.type()) { case InstallOperation::SOURCE_COPY: return target_supports_snapshot_ && GetVirtualAbFeatureFlag().IsEnabled() && mapped_devices_.count(partition_name + SlotSuffixForSlotNumber(target_slot_)) > 0 && OptimizeSourceCopyOperation(operation, optimized); break; default: break; } return false; } bool DynamicPartitionControlAndroid::MapPartitionInternal( const std::string& super_device, const std::string& target_partition_name, uint32_t slot, bool force_writable, std::string* path) { CreateLogicalPartitionParams params = { .block_device = super_device, .metadata_slot = slot, .partition_name = target_partition_name, .force_writable = force_writable, }; bool success = false; if (GetVirtualAbFeatureFlag().IsEnabled() && target_supports_snapshot_ && force_writable && ExpectMetadataMounted()) { // Only target partitions are mapped with force_writable. On Virtual // A/B devices, target partitions may overlap with source partitions, so // they must be mapped with snapshot. // One exception is when /metadata is not mounted. Fallback to // CreateLogicalPartition as snapshots are not created in the first place. params.timeout_ms = kMapSnapshotTimeout; success = snapshot_->MapUpdateSnapshot(params, path); } else { params.timeout_ms = kMapTimeout; success = CreateLogicalPartition(params, path); } if (!success) { LOG(ERROR) << "Cannot map " << target_partition_name << " in " << super_device << " on device mapper."; return false; } LOG(INFO) << "Succesfully mapped " << target_partition_name << " to device mapper (force_writable = " << force_writable << "); device path at " << *path; mapped_devices_.insert(target_partition_name); return true; } bool DynamicPartitionControlAndroid::MapPartitionOnDeviceMapper( const std::string& super_device, const std::string& target_partition_name, uint32_t slot, bool force_writable, std::string* path) { DmDeviceState state = GetState(target_partition_name); if (state == DmDeviceState::ACTIVE) { if (mapped_devices_.find(target_partition_name) != mapped_devices_.end()) { if (GetDmDevicePathByName(target_partition_name, path)) { LOG(INFO) << target_partition_name << " is mapped on device mapper: " << *path; return true; } LOG(ERROR) << target_partition_name << " is mapped but path is unknown."; return false; } // If target_partition_name is not in mapped_devices_ but state is ACTIVE, // the device might be mapped incorrectly before. Attempt to unmap it. // Note that for source partitions, if GetState() == ACTIVE, callers (e.g. // BootControlAndroid) should not call MapPartitionOnDeviceMapper, but // should directly call GetDmDevicePathByName. if (!UnmapPartitionOnDeviceMapper(target_partition_name)) { LOG(ERROR) << target_partition_name << " is mapped before the update, and it cannot be unmapped."; return false; } state = GetState(target_partition_name); if (state != DmDeviceState::INVALID) { LOG(ERROR) << target_partition_name << " is unmapped but state is " << static_cast>(state); return false; } } if (state == DmDeviceState::INVALID) { return MapPartitionInternal( super_device, target_partition_name, slot, force_writable, path); } LOG(ERROR) << target_partition_name << " is mapped on device mapper but state is unknown: " << static_cast>(state); return false; } bool DynamicPartitionControlAndroid::UnmapPartitionOnDeviceMapper( const std::string& target_partition_name) { if (DeviceMapper::Instance().GetState(target_partition_name) != DmDeviceState::INVALID) { // Partitions at target slot on non-Virtual A/B devices are mapped as // dm-linear. Also, on Virtual A/B devices, system_other may be mapped for // preopt apps as dm-linear. // Call DestroyLogicalPartition to handle these cases. bool success = DestroyLogicalPartition(target_partition_name); // On a Virtual A/B device, |target_partition_name| may be a leftover from // a paused update. Clean up any underlying devices. if (ExpectMetadataMounted()) { success &= snapshot_->UnmapUpdateSnapshot(target_partition_name); } else { LOG(INFO) << "Skip UnmapUpdateSnapshot(" << target_partition_name << ") because metadata is not mounted"; } if (!success) { LOG(ERROR) << "Cannot unmap " << target_partition_name << " from device mapper."; return false; } LOG(INFO) << "Successfully unmapped " << target_partition_name << " from device mapper."; } mapped_devices_.erase(target_partition_name); return true; } void DynamicPartitionControlAndroid::UnmapAllPartitions() { if (mapped_devices_.empty()) { return; } // UnmapPartitionOnDeviceMapper removes objects from mapped_devices_, hence // a copy is needed for the loop. std::set mapped = mapped_devices_; LOG(INFO) << "Destroying [" << Join(mapped, ", ") << "] from device mapper"; for (const auto& partition_name : mapped) { ignore_result(UnmapPartitionOnDeviceMapper(partition_name)); } } void DynamicPartitionControlAndroid::Cleanup() { UnmapAllPartitions(); metadata_device_.reset(); } bool DynamicPartitionControlAndroid::DeviceExists(const std::string& path) { return base::PathExists(base::FilePath(path)); } android::dm::DmDeviceState DynamicPartitionControlAndroid::GetState( const std::string& name) { return DeviceMapper::Instance().GetState(name); } bool DynamicPartitionControlAndroid::GetDmDevicePathByName( const std::string& name, std::string* path) { return DeviceMapper::Instance().GetDmDevicePathByName(name, path); } std::unique_ptr DynamicPartitionControlAndroid::LoadMetadataBuilder( const std::string& super_device, uint32_t source_slot) { return LoadMetadataBuilder( super_device, source_slot, BootControlInterface::kInvalidSlot); } std::unique_ptr DynamicPartitionControlAndroid::LoadMetadataBuilder( const std::string& super_device, uint32_t source_slot, uint32_t target_slot) { std::unique_ptr builder; if (target_slot == BootControlInterface::kInvalidSlot) { builder = MetadataBuilder::New(PartitionOpener(), super_device, source_slot); } else { bool always_keep_source_slot = !target_supports_snapshot_; builder = MetadataBuilder::NewForUpdate(PartitionOpener(), super_device, source_slot, target_slot, always_keep_source_slot); } if (builder == nullptr) { LOG(WARNING) << "No metadata slot " << BootControlInterface::SlotName(source_slot) << " in " << super_device; return nullptr; } LOG(INFO) << "Loaded metadata from slot " << BootControlInterface::SlotName(source_slot) << " in " << super_device; return builder; } bool DynamicPartitionControlAndroid::StoreMetadata( const std::string& super_device, MetadataBuilder* builder, uint32_t target_slot) { auto metadata = builder->Export(); if (metadata == nullptr) { LOG(ERROR) << "Cannot export metadata to slot " << BootControlInterface::SlotName(target_slot) << " in " << super_device; return false; } if (GetDynamicPartitionsFeatureFlag().IsRetrofit()) { if (!FlashPartitionTable(super_device, *metadata)) { LOG(ERROR) << "Cannot write metadata to " << super_device; return false; } LOG(INFO) << "Written metadata to " << super_device; } else { if (!UpdatePartitionTable(super_device, *metadata, target_slot)) { LOG(ERROR) << "Cannot write metadata to slot " << BootControlInterface::SlotName(target_slot) << " in " << super_device; return false; } LOG(INFO) << "Copied metadata to slot " << BootControlInterface::SlotName(target_slot) << " in " << super_device; } return true; } bool DynamicPartitionControlAndroid::GetDeviceDir(std::string* out) { // We can't use fs_mgr to look up |partition_name| because fstab // doesn't list every slot partition (it uses the slotselect option // to mask the suffix). // // We can however assume that there's an entry for the /misc mount // point and use that to get the device file for the misc // partition. This helps us locate the disk that |partition_name| // resides on. From there we'll assume that a by-name scheme is used // so we can just replace the trailing "misc" by the given // |partition_name| and suffix corresponding to |slot|, e.g. // // /dev/block/platform/soc.0/7824900.sdhci/by-name/misc -> // /dev/block/platform/soc.0/7824900.sdhci/by-name/boot_a // // If needed, it's possible to relax the by-name assumption in the // future by trawling /sys/block looking for the appropriate sibling // of misc and then finding an entry in /dev matching the sysfs // entry. std::string err, misc_device = get_bootloader_message_blk_device(&err); if (misc_device.empty()) { LOG(ERROR) << "Unable to get misc block device: " << err; return false; } if (!utils::IsSymlink(misc_device.c_str())) { LOG(ERROR) << "Device file " << misc_device << " for /misc " << "is not a symlink."; return false; } *out = base::FilePath(misc_device).DirName().value(); return true; } bool DynamicPartitionControlAndroid::PreparePartitionsForUpdate( uint32_t source_slot, uint32_t target_slot, const DeltaArchiveManifest& manifest, bool update, uint64_t* required_size) { source_slot_ = source_slot; target_slot_ = target_slot; if (required_size != nullptr) { *required_size = 0; } if (fs_mgr_overlayfs_is_setup()) { // Non DAP devices can use overlayfs as well. LOG(WARNING) << "overlayfs overrides are active and can interfere with our " "resources.\n" << "run adb enable-verity to deactivate if required and try again."; } // If metadata is erased but not formatted, it is possible to not mount // it in recovery. It is acceptable to skip mounting and choose fallback path // (PrepareDynamicPartitionsForUpdate) when sideloading full OTAs. TEST_AND_RETURN_FALSE(EnsureMetadataMounted() || IsRecovery()); if (update) { TEST_AND_RETURN_FALSE(EraseSystemOtherAvbFooter(source_slot, target_slot)); } if (!GetDynamicPartitionsFeatureFlag().IsEnabled()) { return true; } if (target_slot == source_slot) { LOG(ERROR) << "Cannot call PreparePartitionsForUpdate on current slot."; return false; } // Although the current build supports dynamic partitions, the given payload // doesn't use it for target partitions. This could happen when applying a // retrofit update. Skip updating the partition metadata for the target slot. is_target_dynamic_ = !manifest.dynamic_partition_metadata().groups().empty(); if (!is_target_dynamic_) { return true; } target_supports_snapshot_ = manifest.dynamic_partition_metadata().snapshot_enabled(); if (!update) return true; bool delete_source = false; if (GetVirtualAbFeatureFlag().IsEnabled()) { // On Virtual A/B device, either CancelUpdate() or BeginUpdate() must be // called before calling UnmapUpdateSnapshot. // - If target_supports_snapshot_, PrepareSnapshotPartitionsForUpdate() // calls BeginUpdate() which resets update state // - If !target_supports_snapshot_ or PrepareSnapshotPartitionsForUpdate // failed in recovery, explicitly CancelUpdate(). if (target_supports_snapshot_) { if (PrepareSnapshotPartitionsForUpdate( source_slot, target_slot, manifest, required_size)) { return true; } // Virtual A/B device doing Virtual A/B update in Android mode must use // snapshots. if (!IsRecovery()) { LOG(ERROR) << "PrepareSnapshotPartitionsForUpdate failed in Android " << "mode"; return false; } delete_source = true; LOG(INFO) << "PrepareSnapshotPartitionsForUpdate failed in recovery. " << "Attempt to overwrite existing partitions if possible"; } else { // Downgrading to an non-Virtual A/B build or is secondary OTA. LOG(INFO) << "Using regular A/B on Virtual A/B because package disabled " << "snapshots."; } // In recovery, if /metadata is not mounted, it is likely that metadata // partition is erased and not formatted yet. After sideloading, when // rebooting into the new version, init will erase metadata partition, // hence the failure of CancelUpdate() can be ignored here. // However, if metadata is mounted and CancelUpdate fails, sideloading // should not proceed because during next boot, snapshots will overlay on // the devices incorrectly. if (ExpectMetadataMounted()) { TEST_AND_RETURN_FALSE(snapshot_->CancelUpdate()); } else { LOG(INFO) << "Skip canceling previous update because metadata is not " << "mounted"; } } return PrepareDynamicPartitionsForUpdate( source_slot, target_slot, manifest, delete_source); } namespace { // Try our best to erase AVB footer. class AvbFooterEraser { public: explicit AvbFooterEraser(const std::string& path) : path_(path) {} bool Erase() { // Try to mark the block device read-only. Ignore any // failure since this won't work when passing regular files. ignore_result(utils::SetBlockDeviceReadOnly(path_, false /* readonly */)); fd_.reset(new EintrSafeFileDescriptor()); int flags = O_WRONLY | O_TRUNC | O_CLOEXEC | O_SYNC; TEST_AND_RETURN_FALSE(fd_->Open(path_.c_str(), flags)); // Need to write end-AVB_FOOTER_SIZE to end. static_assert(AVB_FOOTER_SIZE > 0); off64_t offset = fd_->Seek(-AVB_FOOTER_SIZE, SEEK_END); TEST_AND_RETURN_FALSE_ERRNO(offset >= 0); uint64_t write_size = AVB_FOOTER_SIZE; LOG(INFO) << "Zeroing " << path_ << " @ [" << offset << ", " << (offset + write_size) << "] (" << write_size << " bytes)"; brillo::Blob zeros(write_size); TEST_AND_RETURN_FALSE(utils::WriteAll(fd_, zeros.data(), zeros.size())); return true; } ~AvbFooterEraser() { TEST_AND_RETURN(fd_ != nullptr && fd_->IsOpen()); if (!fd_->Close()) { LOG(WARNING) << "Failed to close fd for " << path_; } } private: std::string path_; FileDescriptorPtr fd_; }; } // namespace std::optional DynamicPartitionControlAndroid::IsAvbEnabledOnSystemOther() { auto prefix = GetProperty(kPostinstallFstabPrefix, ""); if (prefix.empty()) { LOG(WARNING) << "Cannot get " << kPostinstallFstabPrefix; return std::nullopt; } auto path = base::FilePath(prefix).Append("etc/fstab.postinstall").value(); return IsAvbEnabledInFstab(path); } std::optional DynamicPartitionControlAndroid::IsAvbEnabledInFstab( const std::string& path) { Fstab fstab; if (!ReadFstabFromFile(path, &fstab)) { PLOG(WARNING) << "Cannot read fstab from " << path; if (errno == ENOENT) { return false; } return std::nullopt; } for (const auto& entry : fstab) { if (!entry.avb_keys.empty()) { return true; } } return false; } bool DynamicPartitionControlAndroid::GetSystemOtherPath( uint32_t source_slot, uint32_t target_slot, const std::string& partition_name_suffix, std::string* path, bool* should_unmap) { path->clear(); *should_unmap = false; // Check that AVB is enabled on system_other before erasing. auto has_avb = IsAvbEnabledOnSystemOther(); TEST_AND_RETURN_FALSE(has_avb.has_value()); if (!has_avb.value()) { LOG(INFO) << "AVB is not enabled on system_other. Skip erasing."; return true; } if (!IsRecovery()) { // Found unexpected avb_keys for system_other on devices retrofitting // dynamic partitions. Previous crash in update_engine may leave logical // partitions mapped on physical system_other partition. It is difficult to // handle these cases. Just fail. if (GetDynamicPartitionsFeatureFlag().IsRetrofit()) { LOG(ERROR) << "Cannot erase AVB footer on system_other on devices with " << "retrofit dynamic partitions. They should not have AVB " << "enabled on system_other."; return false; } } std::string device_dir_str; TEST_AND_RETURN_FALSE(GetDeviceDir(&device_dir_str)); base::FilePath device_dir(device_dir_str); // On devices without dynamic partition, search for static partitions. if (!GetDynamicPartitionsFeatureFlag().IsEnabled()) { *path = device_dir.Append(partition_name_suffix).value(); TEST_AND_RETURN_FALSE(DeviceExists(*path)); return true; } auto source_super_device = device_dir.Append(GetSuperPartitionName(source_slot)).value(); auto builder = LoadMetadataBuilder(source_super_device, source_slot); if (builder == nullptr) { if (IsRecovery()) { // It might be corrupted for some reason. It should still be able to // sideload. LOG(WARNING) << "Super partition metadata cannot be read from the source " << "slot, skip erasing."; return true; } else { // Device has booted into Android mode, indicating that the super // partition metadata should be there. LOG(ERROR) << "Super partition metadata cannot be read from the source " << "slot. This is unexpected on devices with dynamic " << "partitions enabled."; return false; } } auto p = builder->FindPartition(partition_name_suffix); if (p == nullptr) { // If the source slot is flashed without system_other, it does not exist // in super partition metadata at source slot. It is safe to skip it. LOG(INFO) << "Can't find " << partition_name_suffix << " in metadata source slot, skip erasing."; return true; } // System_other created by flashing tools should be erased. // If partition is created by update_engine (via NewForUpdate), it is a // left-over partition from the previous update and does not contain // system_other, hence there is no need to erase. // Note the reverse is not necessary true. If the flag is not set, we don't // know if the partition is created by update_engine or by flashing tools // because older versions of super partition metadata does not contain this // flag. It is okay to erase the AVB footer anyways. if (p->attributes() & LP_PARTITION_ATTR_UPDATED) { LOG(INFO) << partition_name_suffix << " does not contain system_other, skip erasing."; return true; } if (p->size() < AVB_FOOTER_SIZE) { LOG(INFO) << partition_name_suffix << " has length " << p->size() << "( < AVB_FOOTER_SIZE " << AVB_FOOTER_SIZE << "), skip erasing."; return true; } // Delete any pre-existing device with name |partition_name_suffix| and // also remove it from |mapped_devices_|. // In recovery, metadata might not be mounted, and // UnmapPartitionOnDeviceMapper might fail. However, // it is unusual that system_other has already been mapped. Hence, just skip. TEST_AND_RETURN_FALSE(UnmapPartitionOnDeviceMapper(partition_name_suffix)); // Use CreateLogicalPartition directly to avoid mapping with existing // snapshots. CreateLogicalPartitionParams params = { .block_device = source_super_device, .metadata_slot = source_slot, .partition_name = partition_name_suffix, .force_writable = true, .timeout_ms = kMapTimeout, }; TEST_AND_RETURN_FALSE(CreateLogicalPartition(params, path)); *should_unmap = true; return true; } bool DynamicPartitionControlAndroid::EraseSystemOtherAvbFooter( uint32_t source_slot, uint32_t target_slot) { LOG(INFO) << "Erasing AVB footer of system_other partition before update."; const std::string target_suffix = SlotSuffixForSlotNumber(target_slot); const std::string partition_name_suffix = "system" + target_suffix; std::string path; bool should_unmap = false; TEST_AND_RETURN_FALSE(GetSystemOtherPath( source_slot, target_slot, partition_name_suffix, &path, &should_unmap)); if (path.empty()) { return true; } bool ret = AvbFooterEraser(path).Erase(); // Delete |partition_name_suffix| from device mapper and from // |mapped_devices_| again so that it does not interfere with update process. // In recovery, metadata might not be mounted, and // UnmapPartitionOnDeviceMapper might fail. However, DestroyLogicalPartition // should be called. If DestroyLogicalPartition does fail, it is still okay // to skip the error here and let Prepare*() fail later. if (should_unmap) { TEST_AND_RETURN_FALSE(UnmapPartitionOnDeviceMapper(partition_name_suffix)); } return ret; } bool DynamicPartitionControlAndroid::PrepareDynamicPartitionsForUpdate( uint32_t source_slot, uint32_t target_slot, const DeltaArchiveManifest& manifest, bool delete_source) { const std::string target_suffix = SlotSuffixForSlotNumber(target_slot); // Unmap all the target dynamic partitions because they would become // inconsistent with the new metadata. for (const auto& group : manifest.dynamic_partition_metadata().groups()) { for (const auto& partition_name : group.partition_names()) { if (!UnmapPartitionOnDeviceMapper(partition_name + target_suffix)) { return false; } } } std::string device_dir_str; if (!GetDeviceDir(&device_dir_str)) { return false; } base::FilePath device_dir(device_dir_str); auto source_device = device_dir.Append(GetSuperPartitionName(source_slot)).value(); auto builder = LoadMetadataBuilder(source_device, source_slot, target_slot); if (builder == nullptr) { LOG(ERROR) << "No metadata at " << BootControlInterface::SlotName(source_slot); return false; } if (delete_source) { TEST_AND_RETURN_FALSE( DeleteSourcePartitions(builder.get(), source_slot, manifest)); } if (!UpdatePartitionMetadata(builder.get(), target_slot, manifest)) { return false; } auto target_device = device_dir.Append(GetSuperPartitionName(target_slot)).value(); return StoreMetadata(target_device, builder.get(), target_slot); } bool DynamicPartitionControlAndroid::PrepareSnapshotPartitionsForUpdate( uint32_t source_slot, uint32_t target_slot, const DeltaArchiveManifest& manifest, uint64_t* required_size) { TEST_AND_RETURN_FALSE(ExpectMetadataMounted()); if (!snapshot_->BeginUpdate()) { LOG(ERROR) << "Cannot begin new update."; return false; } auto ret = snapshot_->CreateUpdateSnapshots(manifest); if (!ret) { LOG(ERROR) << "Cannot create update snapshots: " << ret.string(); if (required_size != nullptr && ret.error_code() == Return::ErrorCode::NO_SPACE) { *required_size = ret.required_size(); } return false; } return true; } std::string DynamicPartitionControlAndroid::GetSuperPartitionName( uint32_t slot) { return fs_mgr_get_super_partition_name(slot); } bool DynamicPartitionControlAndroid::UpdatePartitionMetadata( MetadataBuilder* builder, uint32_t target_slot, const DeltaArchiveManifest& manifest) { // If applying downgrade from Virtual A/B to non-Virtual A/B, the left-over // COW group needs to be deleted to ensure there are enough space to create // target partitions. builder->RemoveGroupAndPartitions(android::snapshot::kCowGroupName); const std::string target_suffix = SlotSuffixForSlotNumber(target_slot); DeleteGroupsWithSuffix(builder, target_suffix); uint64_t total_size = 0; for (const auto& group : manifest.dynamic_partition_metadata().groups()) { total_size += group.size(); } std::string expr; uint64_t allocatable_space = builder->AllocatableSpace(); if (!GetDynamicPartitionsFeatureFlag().IsRetrofit()) { allocatable_space /= 2; expr = "half of "; } if (total_size > allocatable_space) { LOG(ERROR) << "The maximum size of all groups with suffix " << target_suffix << " (" << total_size << ") has exceeded " << expr << "allocatable space for dynamic partitions " << allocatable_space << "."; return false; } // name of partition(e.g. "system") -> size in bytes std::map partition_sizes; for (const auto& partition : manifest.partitions()) { partition_sizes.emplace(partition.partition_name(), partition.new_partition_info().size()); } for (const auto& group : manifest.dynamic_partition_metadata().groups()) { auto group_name_suffix = group.name() + target_suffix; if (!builder->AddGroup(group_name_suffix, group.size())) { LOG(ERROR) << "Cannot add group " << group_name_suffix << " with size " << group.size(); return false; } LOG(INFO) << "Added group " << group_name_suffix << " with size " << group.size(); for (const auto& partition_name : group.partition_names()) { auto partition_sizes_it = partition_sizes.find(partition_name); if (partition_sizes_it == partition_sizes.end()) { // TODO(tbao): Support auto-filling partition info for framework-only // OTA. LOG(ERROR) << "dynamic_partition_metadata contains partition " << partition_name << " but it is not part of the manifest. " << "This is not supported."; return false; } uint64_t partition_size = partition_sizes_it->second; auto partition_name_suffix = partition_name + target_suffix; Partition* p = builder->AddPartition( partition_name_suffix, group_name_suffix, LP_PARTITION_ATTR_READONLY); if (!p) { LOG(ERROR) << "Cannot add partition " << partition_name_suffix << " to group " << group_name_suffix; return false; } if (!builder->ResizePartition(p, partition_size)) { LOG(ERROR) << "Cannot resize partition " << partition_name_suffix << " to size " << partition_size << ". Not enough space?"; return false; } LOG(INFO) << "Added partition " << partition_name_suffix << " to group " << group_name_suffix << " with size " << partition_size; } } return true; } bool DynamicPartitionControlAndroid::FinishUpdate(bool powerwash_required) { if (ExpectMetadataMounted()) { if (snapshot_->GetUpdateState() == UpdateState::Initiated) { LOG(INFO) << "Snapshot writes are done."; return snapshot_->FinishedSnapshotWrites(powerwash_required); } } else { LOG(INFO) << "Skip FinishedSnapshotWrites() because /metadata is not " << "mounted"; } return true; } bool DynamicPartitionControlAndroid::GetPartitionDevice( const std::string& partition_name, uint32_t slot, uint32_t current_slot, std::string* device) { const auto& partition_name_suffix = partition_name + SlotSuffixForSlotNumber(slot); std::string device_dir_str; TEST_AND_RETURN_FALSE(GetDeviceDir(&device_dir_str)); base::FilePath device_dir(device_dir_str); // When looking up target partition devices, treat them as static if the // current payload doesn't encode them as dynamic partitions. This may happen // when applying a retrofit update on top of a dynamic-partitions-enabled // build. if (GetDynamicPartitionsFeatureFlag().IsEnabled() && (slot == current_slot || is_target_dynamic_)) { switch (GetDynamicPartitionDevice( device_dir, partition_name_suffix, slot, current_slot, device)) { case DynamicPartitionDeviceStatus::SUCCESS: return true; case DynamicPartitionDeviceStatus::TRY_STATIC: break; case DynamicPartitionDeviceStatus::ERROR: // fallthrough default: return false; } } base::FilePath path = device_dir.Append(partition_name_suffix); if (!DeviceExists(path.value())) { LOG(ERROR) << "Device file " << path.value() << " does not exist."; return false; } *device = path.value(); return true; } bool DynamicPartitionControlAndroid::IsSuperBlockDevice( const base::FilePath& device_dir, uint32_t current_slot, const std::string& partition_name_suffix) { std::string source_device = device_dir.Append(GetSuperPartitionName(current_slot)).value(); auto source_metadata = LoadMetadataBuilder(source_device, current_slot); return source_metadata->HasBlockDevice(partition_name_suffix); } DynamicPartitionControlAndroid::DynamicPartitionDeviceStatus DynamicPartitionControlAndroid::GetDynamicPartitionDevice( const base::FilePath& device_dir, const std::string& partition_name_suffix, uint32_t slot, uint32_t current_slot, std::string* device) { std::string super_device = device_dir.Append(GetSuperPartitionName(slot)).value(); auto builder = LoadMetadataBuilder(super_device, slot); if (builder == nullptr) { LOG(ERROR) << "No metadata in slot " << BootControlInterface::SlotName(slot); return DynamicPartitionDeviceStatus::ERROR; } if (builder->FindPartition(partition_name_suffix) == nullptr) { LOG(INFO) << partition_name_suffix << " is not in super partition metadata."; if (IsSuperBlockDevice(device_dir, current_slot, partition_name_suffix)) { LOG(ERROR) << "The static partition " << partition_name_suffix << " is a block device for current metadata." << "It cannot be used as a logical partition."; return DynamicPartitionDeviceStatus::ERROR; } return DynamicPartitionDeviceStatus::TRY_STATIC; } if (slot == current_slot) { if (GetState(partition_name_suffix) != DmDeviceState::ACTIVE) { LOG(WARNING) << partition_name_suffix << " is at current slot but it is " << "not mapped. Now try to map it."; } else { if (GetDmDevicePathByName(partition_name_suffix, device)) { LOG(INFO) << partition_name_suffix << " is mapped on device mapper: " << *device; return DynamicPartitionDeviceStatus::SUCCESS; } LOG(ERROR) << partition_name_suffix << "is mapped but path is unknown."; return DynamicPartitionDeviceStatus::ERROR; } } bool force_writable = slot != current_slot; if (MapPartitionOnDeviceMapper( super_device, partition_name_suffix, slot, force_writable, device)) { return DynamicPartitionDeviceStatus::SUCCESS; } return DynamicPartitionDeviceStatus::ERROR; } void DynamicPartitionControlAndroid::set_fake_mapped_devices( const std::set& fake) { mapped_devices_ = fake; } bool DynamicPartitionControlAndroid::IsRecovery() { return kIsRecovery; } static bool IsIncrementalUpdate(const DeltaArchiveManifest& manifest) { const auto& partitions = manifest.partitions(); return std::any_of(partitions.begin(), partitions.end(), [](const auto& p) { return p.has_old_partition_info(); }); } bool DynamicPartitionControlAndroid::DeleteSourcePartitions( MetadataBuilder* builder, uint32_t source_slot, const DeltaArchiveManifest& manifest) { TEST_AND_RETURN_FALSE(IsRecovery()); if (IsIncrementalUpdate(manifest)) { LOG(ERROR) << "Cannot sideload incremental OTA because snapshots cannot " << "be created."; if (GetVirtualAbFeatureFlag().IsLaunch()) { LOG(ERROR) << "Sideloading incremental updates on devices launches " << " Virtual A/B is not supported."; } return false; } LOG(INFO) << "Will overwrite existing partitions. Slot " << BootControlInterface::SlotName(source_slot) << "may be unbootable until update finishes!"; const std::string source_suffix = SlotSuffixForSlotNumber(source_slot); DeleteGroupsWithSuffix(builder, source_suffix); return true; } std::unique_ptr DynamicPartitionControlAndroid::GetCleanupPreviousUpdateAction( BootControlInterface* boot_control, PrefsInterface* prefs, CleanupPreviousUpdateActionDelegateInterface* delegate) { if (!GetVirtualAbFeatureFlag().IsEnabled()) { return std::make_unique(); } return std::make_unique( prefs, boot_control, snapshot_.get(), delegate); } bool DynamicPartitionControlAndroid::ResetUpdate(PrefsInterface* prefs) { if (!GetVirtualAbFeatureFlag().IsEnabled()) { return true; } LOG(INFO) << __func__ << " resetting update state and deleting snapshots."; TEST_AND_RETURN_FALSE(prefs != nullptr); // If the device has already booted into the target slot, // ResetUpdateProgress may pass but CancelUpdate fails. // This is expected. A scheduled CleanupPreviousUpdateAction should free // space when it is done. TEST_AND_RETURN_FALSE(DeltaPerformer::ResetUpdateProgress( prefs, false /* quick */, false /* skip dynamic partitions metadata */)); if (ExpectMetadataMounted()) { TEST_AND_RETURN_FALSE(snapshot_->CancelUpdate()); } else { LOG(INFO) << "Skip cancelling update in ResetUpdate because /metadata is " << "not mounted"; } return true; } bool DynamicPartitionControlAndroid::ExpectMetadataMounted() { // No need to mount metadata for non-Virtual A/B devices. if (!GetVirtualAbFeatureFlag().IsEnabled()) { return false; } // Intentionally not checking |metadata_device_| in Android mode. // /metadata should always be mounted in Android mode. If it isn't, let caller // fails when calling into SnapshotManager. if (!IsRecovery()) { return true; } // In recovery mode, explicitly check |metadata_device_|. return metadata_device_ != nullptr; } bool DynamicPartitionControlAndroid::EnsureMetadataMounted() { // No need to mount metadata for non-Virtual A/B devices. if (!GetVirtualAbFeatureFlag().IsEnabled()) { return true; } if (metadata_device_ == nullptr) { metadata_device_ = snapshot_->EnsureMetadataMounted(); } return metadata_device_ != nullptr; } } // namespace chromeos_update_engine