1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "block_builder.h"
18 
19 #include "base/logging.h"  // FOR VLOG.
20 #include "dex/bytecode_utils.h"
21 #include "dex/code_item_accessors-inl.h"
22 #include "dex/dex_file_exception_helpers.h"
23 #include "quicken_info.h"
24 
25 namespace art {
26 
HBasicBlockBuilder(HGraph * graph,const DexFile * const dex_file,const CodeItemDebugInfoAccessor & accessor,ScopedArenaAllocator * local_allocator)27 HBasicBlockBuilder::HBasicBlockBuilder(HGraph* graph,
28                                        const DexFile* const dex_file,
29                                        const CodeItemDebugInfoAccessor& accessor,
30                                        ScopedArenaAllocator* local_allocator)
31     : allocator_(graph->GetAllocator()),
32       graph_(graph),
33       dex_file_(dex_file),
34       code_item_accessor_(accessor),
35       local_allocator_(local_allocator),
36       branch_targets_(code_item_accessor_.HasCodeItem()
37                           ? code_item_accessor_.InsnsSizeInCodeUnits()
38                           : /* fake dex_pc=0 for intrinsic graph */ 1u,
39                       nullptr,
40                       local_allocator->Adapter(kArenaAllocGraphBuilder)),
41       throwing_blocks_(kDefaultNumberOfThrowingBlocks,
42                        local_allocator->Adapter(kArenaAllocGraphBuilder)),
43       number_of_branches_(0u),
44       quicken_index_for_dex_pc_(std::less<uint32_t>(),
45                                 local_allocator->Adapter(kArenaAllocGraphBuilder)) {}
46 
MaybeCreateBlockAt(uint32_t dex_pc)47 HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t dex_pc) {
48   return MaybeCreateBlockAt(dex_pc, dex_pc);
49 }
50 
MaybeCreateBlockAt(uint32_t semantic_dex_pc,uint32_t store_dex_pc)51 HBasicBlock* HBasicBlockBuilder::MaybeCreateBlockAt(uint32_t semantic_dex_pc,
52                                                     uint32_t store_dex_pc) {
53   HBasicBlock* block = branch_targets_[store_dex_pc];
54   if (block == nullptr) {
55     block = new (allocator_) HBasicBlock(graph_, semantic_dex_pc);
56     branch_targets_[store_dex_pc] = block;
57   }
58   DCHECK_EQ(block->GetDexPc(), semantic_dex_pc);
59   return block;
60 }
61 
CreateBranchTargets()62 bool HBasicBlockBuilder::CreateBranchTargets() {
63   // Create the first block for the dex instructions, single successor of the entry block.
64   MaybeCreateBlockAt(0u);
65 
66   if (code_item_accessor_.TriesSize() != 0) {
67     // Create branch targets at the start/end of the TryItem range. These are
68     // places where the program might fall through into/out of the a block and
69     // where TryBoundary instructions will be inserted later. Other edges which
70     // enter/exit the try blocks are a result of branches/switches.
71     for (const dex::TryItem& try_item : code_item_accessor_.TryItems()) {
72       uint32_t dex_pc_start = try_item.start_addr_;
73       uint32_t dex_pc_end = dex_pc_start + try_item.insn_count_;
74       MaybeCreateBlockAt(dex_pc_start);
75       if (dex_pc_end < code_item_accessor_.InsnsSizeInCodeUnits()) {
76         // TODO: Do not create block if the last instruction cannot fall through.
77         MaybeCreateBlockAt(dex_pc_end);
78       } else if (dex_pc_end == code_item_accessor_.InsnsSizeInCodeUnits()) {
79         // The TryItem spans until the very end of the CodeItem and therefore
80         // cannot have any code afterwards.
81       } else {
82         // The TryItem spans beyond the end of the CodeItem. This is invalid code.
83         VLOG(compiler) << "Not compiled: TryItem spans beyond the end of the CodeItem";
84         return false;
85       }
86     }
87 
88     // Create branch targets for exception handlers.
89     const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
90     uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
91     for (uint32_t idx = 0; idx < handlers_size; ++idx) {
92       CatchHandlerIterator iterator(handlers_ptr);
93       for (; iterator.HasNext(); iterator.Next()) {
94         MaybeCreateBlockAt(iterator.GetHandlerAddress());
95       }
96       handlers_ptr = iterator.EndDataPointer();
97     }
98   }
99 
100   // Iterate over all instructions and find branching instructions. Create blocks for
101   // the locations these instructions branch to.
102   for (const DexInstructionPcPair& pair : code_item_accessor_) {
103     const uint32_t dex_pc = pair.DexPc();
104     const Instruction& instruction = pair.Inst();
105 
106     if (instruction.IsBranch()) {
107       number_of_branches_++;
108       MaybeCreateBlockAt(dex_pc + instruction.GetTargetOffset());
109     } else if (instruction.IsSwitch()) {
110       number_of_branches_++;  // count as at least one branch (b/77652521)
111       DexSwitchTable table(instruction, dex_pc);
112       for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
113         MaybeCreateBlockAt(dex_pc + s_it.CurrentTargetOffset());
114 
115         // Create N-1 blocks where we will insert comparisons of the input value
116         // against the Switch's case keys.
117         if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) {
118           // Store the block under dex_pc of the current key at the switch data
119           // instruction for uniqueness but give it the dex_pc of the SWITCH
120           // instruction which it semantically belongs to.
121           MaybeCreateBlockAt(dex_pc, s_it.GetDexPcForCurrentIndex());
122         }
123       }
124     } else if (instruction.Opcode() == Instruction::MOVE_EXCEPTION) {
125       // End the basic block after MOVE_EXCEPTION. This simplifies the later
126       // stage of TryBoundary-block insertion.
127     } else {
128       continue;
129     }
130 
131     if (instruction.CanFlowThrough()) {
132       DexInstructionIterator next(std::next(DexInstructionIterator(pair)));
133       if (next == code_item_accessor_.end()) {
134         // In the normal case we should never hit this but someone can artificially forge a dex
135         // file to fall-through out the method code. In this case we bail out compilation.
136         VLOG(compiler) << "Not compiled: Fall-through beyond the CodeItem";
137         return false;
138       }
139       MaybeCreateBlockAt(next.DexPc());
140     }
141   }
142 
143   return true;
144 }
145 
ConnectBasicBlocks()146 void HBasicBlockBuilder::ConnectBasicBlocks() {
147   HBasicBlock* block = graph_->GetEntryBlock();
148   graph_->AddBlock(block);
149 
150   size_t quicken_index = 0;
151   bool is_throwing_block = false;
152   // Calculate the qucikening index here instead of CreateBranchTargets since it's easier to
153   // calculate in dex_pc order.
154   for (const DexInstructionPcPair& pair : code_item_accessor_) {
155     const uint32_t dex_pc = pair.DexPc();
156     const Instruction& instruction = pair.Inst();
157 
158     // Check if this dex_pc address starts a new basic block.
159     HBasicBlock* next_block = GetBlockAt(dex_pc);
160     if (next_block != nullptr) {
161       // We only need quicken index entries for basic block boundaries.
162       quicken_index_for_dex_pc_.Put(dex_pc, quicken_index);
163       if (block != nullptr) {
164         // Last instruction did not end its basic block but a new one starts here.
165         // It must have been a block falling through into the next one.
166         block->AddSuccessor(next_block);
167       }
168       block = next_block;
169       is_throwing_block = false;
170       graph_->AddBlock(block);
171     }
172     // Make sure to increment this before the continues.
173     if (QuickenInfoTable::NeedsIndexForInstruction(&instruction)) {
174       ++quicken_index;
175     }
176 
177     if (block == nullptr) {
178       // Ignore dead code.
179       continue;
180     }
181 
182     if (!is_throwing_block && IsThrowingDexInstruction(instruction)) {
183       DCHECK(!ContainsElement(throwing_blocks_, block));
184       is_throwing_block = true;
185       throwing_blocks_.push_back(block);
186     }
187 
188     if (instruction.IsBranch()) {
189       uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset();
190       block->AddSuccessor(GetBlockAt(target_dex_pc));
191     } else if (instruction.IsReturn() || (instruction.Opcode() == Instruction::THROW)) {
192       block->AddSuccessor(graph_->GetExitBlock());
193     } else if (instruction.IsSwitch()) {
194       DexSwitchTable table(instruction, dex_pc);
195       for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
196         uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset();
197         block->AddSuccessor(GetBlockAt(target_dex_pc));
198 
199         if (table.ShouldBuildDecisionTree() && !s_it.IsLast()) {
200           uint32_t next_case_dex_pc = s_it.GetDexPcForCurrentIndex();
201           HBasicBlock* next_case_block = GetBlockAt(next_case_dex_pc);
202           block->AddSuccessor(next_case_block);
203           block = next_case_block;
204           graph_->AddBlock(block);
205         }
206       }
207     } else {
208       // Remaining code only applies to instructions which end their basic block.
209       continue;
210     }
211 
212     // Go to the next instruction in case we read dex PC below.
213     if (instruction.CanFlowThrough()) {
214       block->AddSuccessor(GetBlockAt(std::next(DexInstructionIterator(pair)).DexPc()));
215     }
216 
217     // The basic block ends here. Do not add any more instructions.
218     block = nullptr;
219   }
220 
221   graph_->AddBlock(graph_->GetExitBlock());
222 }
223 
224 // Returns the TryItem stored for `block` or nullptr if there is no info for it.
GetTryItem(HBasicBlock * block,const ScopedArenaSafeMap<uint32_t,const dex::TryItem * > & try_block_info)225 static const dex::TryItem* GetTryItem(
226     HBasicBlock* block,
227     const ScopedArenaSafeMap<uint32_t, const dex::TryItem*>& try_block_info) {
228   auto iterator = try_block_info.find(block->GetBlockId());
229   return (iterator == try_block_info.end()) ? nullptr : iterator->second;
230 }
231 
232 // Iterates over the exception handlers of `try_item`, finds the corresponding
233 // catch blocks and makes them successors of `try_boundary`. The order of
234 // successors matches the order in which runtime exception delivery searches
235 // for a handler.
LinkToCatchBlocks(HTryBoundary * try_boundary,const CodeItemDataAccessor & accessor,const dex::TryItem * try_item,const ScopedArenaSafeMap<uint32_t,HBasicBlock * > & catch_blocks)236 static void LinkToCatchBlocks(HTryBoundary* try_boundary,
237                               const CodeItemDataAccessor& accessor,
238                               const dex::TryItem* try_item,
239                               const ScopedArenaSafeMap<uint32_t, HBasicBlock*>& catch_blocks) {
240   for (CatchHandlerIterator it(accessor.GetCatchHandlerData(try_item->handler_off_));
241       it.HasNext();
242       it.Next()) {
243     try_boundary->AddExceptionHandler(catch_blocks.Get(it.GetHandlerAddress()));
244   }
245 }
246 
MightHaveLiveNormalPredecessors(HBasicBlock * catch_block)247 bool HBasicBlockBuilder::MightHaveLiveNormalPredecessors(HBasicBlock* catch_block) {
248   if (kIsDebugBuild) {
249     DCHECK_NE(catch_block->GetDexPc(), kNoDexPc) << "Should not be called on synthetic blocks";
250     DCHECK(!graph_->GetEntryBlock()->GetSuccessors().empty())
251         << "Basic blocks must have been created and connected";
252     for (HBasicBlock* predecessor : catch_block->GetPredecessors()) {
253       DCHECK(!predecessor->IsSingleTryBoundary())
254           << "TryBoundary blocks must not have not been created yet";
255     }
256   }
257 
258   const Instruction& first = code_item_accessor_.InstructionAt(catch_block->GetDexPc());
259   if (first.Opcode() == Instruction::MOVE_EXCEPTION) {
260     // Verifier guarantees that if a catch block begins with MOVE_EXCEPTION then
261     // it has no live normal predecessors.
262     return false;
263   } else if (catch_block->GetPredecessors().empty()) {
264     // Normal control-flow edges have already been created. Since block's list of
265     // predecessors is empty, it cannot have any live or dead normal predecessors.
266     return false;
267   }
268 
269   // The catch block has normal predecessors but we do not know which are live
270   // and which will be removed during the initial DCE. Return `true` to signal
271   // that it may have live normal predecessors.
272   return true;
273 }
274 
InsertTryBoundaryBlocks()275 void HBasicBlockBuilder::InsertTryBoundaryBlocks() {
276   if (code_item_accessor_.TriesSize() == 0) {
277     return;
278   }
279 
280   // Keep a map of all try blocks and their respective TryItems. We do not use
281   // the block's pointer but rather its id to ensure deterministic iteration.
282   ScopedArenaSafeMap<uint32_t, const dex::TryItem*> try_block_info(
283       std::less<uint32_t>(), local_allocator_->Adapter(kArenaAllocGraphBuilder));
284 
285   // Obtain TryItem information for blocks with throwing instructions, and split
286   // blocks which are both try & catch to simplify the graph.
287   for (HBasicBlock* block : graph_->GetBlocks()) {
288     if (block->GetDexPc() == kNoDexPc) {
289       continue;
290     }
291 
292     // Do not bother creating exceptional edges for try blocks which have no
293     // throwing instructions. In that case we simply assume that the block is
294     // not covered by a TryItem. This prevents us from creating a throw-catch
295     // loop for synchronized blocks.
296     if (ContainsElement(throwing_blocks_, block)) {
297       // Try to find a TryItem covering the block.
298       const dex::TryItem* try_item = code_item_accessor_.FindTryItem(block->GetDexPc());
299       if (try_item != nullptr) {
300         // Block throwing and in a TryItem. Store the try block information.
301         try_block_info.Put(block->GetBlockId(), try_item);
302       }
303     }
304   }
305 
306   // Map from a handler dex_pc to the corresponding catch block.
307   ScopedArenaSafeMap<uint32_t, HBasicBlock*> catch_blocks(
308       std::less<uint32_t>(), local_allocator_->Adapter(kArenaAllocGraphBuilder));
309 
310   // Iterate over catch blocks, create artifical landing pads if necessary to
311   // simplify the CFG, and set metadata.
312   const uint8_t* handlers_ptr = code_item_accessor_.GetCatchHandlerData();
313   uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
314   for (uint32_t idx = 0; idx < handlers_size; ++idx) {
315     CatchHandlerIterator iterator(handlers_ptr);
316     for (; iterator.HasNext(); iterator.Next()) {
317       uint32_t address = iterator.GetHandlerAddress();
318       auto existing = catch_blocks.find(address);
319       if (existing != catch_blocks.end()) {
320         // Catch block already processed.
321         TryCatchInformation* info = existing->second->GetTryCatchInformation();
322         if (iterator.GetHandlerTypeIndex() != info->GetCatchTypeIndex()) {
323           // The handler is for multiple types. We could record all the types, but
324           // doing class resolution here isn't ideal, and it's unclear whether wasting
325           // the space in TryCatchInformation is worth it.
326           info->SetInvalidTypeIndex();
327         }
328         continue;
329       }
330 
331       // Check if we should create an artifical landing pad for the catch block.
332       // We create one if the catch block is also a try block because we do not
333       // have a strategy for inserting TryBoundaries on exceptional edges.
334       // We also create one if the block might have normal predecessors so as to
335       // simplify register allocation.
336       HBasicBlock* catch_block = GetBlockAt(address);
337       bool is_try_block = (try_block_info.find(catch_block->GetBlockId()) != try_block_info.end());
338       if (is_try_block || MightHaveLiveNormalPredecessors(catch_block)) {
339         HBasicBlock* new_catch_block = new (allocator_) HBasicBlock(graph_, address);
340         new_catch_block->AddInstruction(new (allocator_) HGoto(address));
341         new_catch_block->AddSuccessor(catch_block);
342         graph_->AddBlock(new_catch_block);
343         catch_block = new_catch_block;
344       }
345 
346       catch_blocks.Put(address, catch_block);
347       catch_block->SetTryCatchInformation(
348           new (allocator_) TryCatchInformation(iterator.GetHandlerTypeIndex(), *dex_file_));
349     }
350     handlers_ptr = iterator.EndDataPointer();
351   }
352 
353   // Do a pass over the try blocks and insert entering TryBoundaries where at
354   // least one predecessor is not covered by the same TryItem as the try block.
355   // We do not split each edge separately, but rather create one boundary block
356   // that all predecessors are relinked to. This preserves loop headers (b/23895756).
357   for (const auto& entry : try_block_info) {
358     uint32_t block_id = entry.first;
359     const dex::TryItem* try_item = entry.second;
360     HBasicBlock* try_block = graph_->GetBlocks()[block_id];
361     for (HBasicBlock* predecessor : try_block->GetPredecessors()) {
362       if (GetTryItem(predecessor, try_block_info) != try_item) {
363         // Found a predecessor not covered by the same TryItem. Insert entering
364         // boundary block.
365         HTryBoundary* try_entry = new (allocator_) HTryBoundary(
366             HTryBoundary::BoundaryKind::kEntry, try_block->GetDexPc());
367         try_block->CreateImmediateDominator()->AddInstruction(try_entry);
368         LinkToCatchBlocks(try_entry, code_item_accessor_, try_item, catch_blocks);
369         break;
370       }
371     }
372   }
373 
374   // Do a second pass over the try blocks and insert exit TryBoundaries where
375   // the successor is not in the same TryItem.
376   for (const auto& entry : try_block_info) {
377     uint32_t block_id = entry.first;
378     const dex::TryItem* try_item = entry.second;
379     HBasicBlock* try_block = graph_->GetBlocks()[block_id];
380     // NOTE: Do not use iterators because SplitEdge would invalidate them.
381     for (size_t i = 0, e = try_block->GetSuccessors().size(); i < e; ++i) {
382       HBasicBlock* successor = try_block->GetSuccessors()[i];
383 
384       // If the successor is a try block, all of its predecessors must be
385       // covered by the same TryItem. Otherwise the previous pass would have
386       // created a non-throwing boundary block.
387       if (GetTryItem(successor, try_block_info) != nullptr) {
388         DCHECK_EQ(try_item, GetTryItem(successor, try_block_info));
389         continue;
390       }
391 
392       // Insert TryBoundary and link to catch blocks.
393       HTryBoundary* try_exit =
394           new (allocator_) HTryBoundary(HTryBoundary::BoundaryKind::kExit, successor->GetDexPc());
395       graph_->SplitEdge(try_block, successor)->AddInstruction(try_exit);
396       LinkToCatchBlocks(try_exit, code_item_accessor_, try_item, catch_blocks);
397     }
398   }
399 }
400 
InsertSynthesizedLoopsForOsr()401 void HBasicBlockBuilder::InsertSynthesizedLoopsForOsr() {
402   ArenaSet<uint32_t> targets(allocator_->Adapter(kArenaAllocGraphBuilder));
403   // Collect basic blocks that are targets of a negative branch.
404   for (const DexInstructionPcPair& pair : code_item_accessor_) {
405     const uint32_t dex_pc = pair.DexPc();
406     const Instruction& instruction = pair.Inst();
407     if (instruction.IsBranch()) {
408       uint32_t target_dex_pc = dex_pc + instruction.GetTargetOffset();
409       if (target_dex_pc < dex_pc) {
410         HBasicBlock* block = GetBlockAt(target_dex_pc);
411         CHECK_NE(kNoDexPc, block->GetDexPc());
412         targets.insert(block->GetBlockId());
413       }
414     } else if (instruction.IsSwitch()) {
415       DexSwitchTable table(instruction, dex_pc);
416       for (DexSwitchTableIterator s_it(table); !s_it.Done(); s_it.Advance()) {
417         uint32_t target_dex_pc = dex_pc + s_it.CurrentTargetOffset();
418         if (target_dex_pc < dex_pc) {
419           HBasicBlock* block = GetBlockAt(target_dex_pc);
420           CHECK_NE(kNoDexPc, block->GetDexPc());
421           targets.insert(block->GetBlockId());
422         }
423       }
424     }
425   }
426 
427   // Insert synthesized loops before the collected blocks.
428   for (uint32_t block_id : targets) {
429     HBasicBlock* block = graph_->GetBlocks()[block_id];
430     HBasicBlock* loop_block = new (allocator_) HBasicBlock(graph_, block->GetDexPc());
431     graph_->AddBlock(loop_block);
432     while (!block->GetPredecessors().empty()) {
433       block->GetPredecessors()[0]->ReplaceSuccessor(block, loop_block);
434     }
435     loop_block->AddSuccessor(loop_block);
436     loop_block->AddSuccessor(block);
437     // We loop on false - we know this won't be optimized later on as the loop
438     // is marked irreducible, which disables loop optimizations.
439     loop_block->AddInstruction(new (allocator_) HIf(graph_->GetIntConstant(0), kNoDexPc));
440   }
441 }
442 
Build()443 bool HBasicBlockBuilder::Build() {
444   DCHECK(code_item_accessor_.HasCodeItem());
445   DCHECK(graph_->GetBlocks().empty());
446 
447   graph_->SetEntryBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc));
448   graph_->SetExitBlock(new (allocator_) HBasicBlock(graph_, kNoDexPc));
449 
450   // TODO(dbrazdil): Do CreateBranchTargets and ConnectBasicBlocks in one pass.
451   if (!CreateBranchTargets()) {
452     return false;
453   }
454 
455   ConnectBasicBlocks();
456   InsertTryBoundaryBlocks();
457 
458   if (graph_->IsCompilingOsr()) {
459     InsertSynthesizedLoopsForOsr();
460   }
461 
462   return true;
463 }
464 
BuildIntrinsic()465 void HBasicBlockBuilder::BuildIntrinsic() {
466   DCHECK(!code_item_accessor_.HasCodeItem());
467   DCHECK(graph_->GetBlocks().empty());
468 
469   // Create blocks.
470   HBasicBlock* entry_block = new (allocator_) HBasicBlock(graph_, kNoDexPc);
471   HBasicBlock* exit_block = new (allocator_) HBasicBlock(graph_, kNoDexPc);
472   HBasicBlock* body = MaybeCreateBlockAt(/* semantic_dex_pc= */ kNoDexPc, /* store_dex_pc= */ 0u);
473 
474   // Add blocks to the graph.
475   graph_->AddBlock(entry_block);
476   graph_->AddBlock(body);
477   graph_->AddBlock(exit_block);
478   graph_->SetEntryBlock(entry_block);
479   graph_->SetExitBlock(exit_block);
480 
481   // Connect blocks.
482   entry_block->AddSuccessor(body);
483   body->AddSuccessor(exit_block);
484 }
485 
GetQuickenIndex(uint32_t dex_pc) const486 size_t HBasicBlockBuilder::GetQuickenIndex(uint32_t dex_pc) const {
487   return quicken_index_for_dex_pc_.Get(dex_pc);
488 }
489 
490 }  // namespace art
491