1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #define LOG_TAG "EmulatedScene"
19 #include "EmulatedScene.h"
20 #include "EmulatedSensor.h"
21
22 #include <stdlib.h>
23 #include <utils/Log.h>
24
25 #include <cmath>
26
27 // TODO: This should probably be done host-side in OpenGL for speed and better
28 // quality
29
30 namespace android {
31
32 using ::android::frameworks::sensorservice::V1_0::ISensorManager;
33 using ::android::frameworks::sensorservice::V1_0::Result;
34 using ::android::hardware::sensors::V1_0::SensorInfo;
35 using ::android::hardware::sensors::V1_0::SensorType;
36
37 // Define single-letter shortcuts for scene definition, for directly indexing
38 // mCurrentColors
39 #define G (EmulatedScene::GRASS * EmulatedScene::NUM_CHANNELS)
40 #define S (EmulatedScene::GRASS_SHADOW * EmulatedScene::NUM_CHANNELS)
41 #define H (EmulatedScene::HILL * EmulatedScene::NUM_CHANNELS)
42 #define W (EmulatedScene::WALL * EmulatedScene::NUM_CHANNELS)
43 #define R (EmulatedScene::ROOF * EmulatedScene::NUM_CHANNELS)
44 #define D (EmulatedScene::DOOR * EmulatedScene::NUM_CHANNELS)
45 #define C (EmulatedScene::CHIMNEY * EmulatedScene::NUM_CHANNELS)
46 #define I (EmulatedScene::WINDOW * EmulatedScene::NUM_CHANNELS)
47 #define U (EmulatedScene::SUN * EmulatedScene::NUM_CHANNELS)
48 #define K (EmulatedScene::SKY * EmulatedScene::NUM_CHANNELS)
49 #define M (EmulatedScene::MOON * EmulatedScene::NUM_CHANNELS)
50
51 const uint8_t EmulatedScene::kScene[EmulatedScene::kSceneWidth *
52 EmulatedScene::kSceneHeight] = {
53 // 5 10 15 20
54 K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K,
55 K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K,
56 K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K,
57 K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K,
58 K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, // 5
59 K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K, K,
60 K, K, K, K, K, K, K, K, H, H, H, H, H, H, H, H, H, H, H, H,
61 K, K, K, K, K, K, K, K, H, H, H, H, H, H, H, C, C, H, H, H,
62 K, K, K, K, K, K, H, H, H, H, H, H, H, H, H, C, C, H, H, H,
63 H, K, K, K, K, K, H, R, R, R, R, R, R, R, R, R, R, R, R, H, // 10
64 H, K, K, K, K, H, H, R, R, R, R, R, R, R, R, R, R, R, R, H,
65 H, H, H, K, K, H, H, R, R, R, R, R, R, R, R, R, R, R, R, H,
66 H, H, H, K, K, H, H, H, W, W, W, W, W, W, W, W, W, W, H, H,
67 S, S, S, G, G, S, S, S, W, W, W, W, W, W, W, W, W, W, S, S,
68 S, G, G, G, G, S, S, S, W, I, I, W, D, D, W, I, I, W, S, S, // 15
69 G, G, G, G, G, G, S, S, W, I, I, W, D, D, W, I, I, W, S, S,
70 G, G, G, G, G, G, G, G, W, W, W, W, D, D, W, W, W, W, G, G,
71 G, G, G, G, G, G, G, G, W, W, W, W, D, D, W, W, W, W, G, G,
72 G, G, G, G, G, G, G, G, S, S, S, S, S, S, S, S, S, S, G, G,
73 G, G, G, G, G, G, G, G, S, S, S, S, S, S, S, S, S, S, G, G, // 20
74 // 5 10 15 20
75 };
76
77 #undef G
78 #undef S
79 #undef H
80 #undef W
81 #undef R
82 #undef D
83 #undef C
84 #undef I
85 #undef U
86 #undef K
87 #undef M
88
EmulatedScene(int sensor_width_px,int sensor_height_px,float sensor_sensitivity,int sensor_orientation,bool is_front_facing)89 EmulatedScene::EmulatedScene(int sensor_width_px, int sensor_height_px,
90 float sensor_sensitivity, int sensor_orientation,
91 bool is_front_facing)
92 : sensor_handle_(-1),
93 screen_rotation_(0),
94 current_scene_(scene_rot0_),
95 sensor_orientation_(sensor_orientation),
96 is_front_facing_(is_front_facing),
97 hour_(12),
98 exposure_duration_(0.033f) {
99 // Assume that sensor filters are sRGB primaries to start
100 filter_r_[0] = 3.2406f;
101 filter_r_[1] = -1.5372f;
102 filter_r_[2] = -0.4986f;
103 filter_gr_[0] = -0.9689f;
104 filter_gr_[1] = 1.8758f;
105 filter_gr_[2] = 0.0415f;
106 filter_gb_[0] = -0.9689f;
107 filter_gb_[1] = 1.8758f;
108 filter_gb_[2] = 0.0415f;
109 filter_b_[0] = 0.0557f;
110 filter_b_[1] = -0.2040f;
111 filter_b_[2] = 1.0570f;
112
113 InitiliazeSceneRotation(!is_front_facing_);
114 Initialize(sensor_width_px, sensor_height_px, sensor_sensitivity);
115 }
116
~EmulatedScene()117 EmulatedScene::~EmulatedScene() {
118 if (sensor_event_queue_.get() != nullptr) {
119 sensor_event_queue_->disableSensor(sensor_handle_);
120 sensor_event_queue_.clear();
121 sensor_event_queue_ = nullptr;
122 }
123 }
124
Initialize(int sensor_width_px,int sensor_height_px,float sensor_sensitivity)125 void EmulatedScene::Initialize(int sensor_width_px, int sensor_height_px,
126 float sensor_sensitivity) {
127 sensor_width_ = sensor_width_px;
128 sensor_height_ = sensor_height_px;
129 sensor_sensitivity_ = sensor_sensitivity;
130
131 // Map scene to sensor pixels
132 if (sensor_width_ > sensor_height_) {
133 map_div_ = (sensor_width_ / (kSceneWidth + 1)) + 1;
134 }
135 else {
136 map_div_ = (sensor_height_ / (kSceneHeight + 1)) + 1;
137 }
138 offset_x_ = (kSceneWidth * map_div_ - sensor_width_) / 2;
139 offset_y_ = (kSceneHeight * map_div_ - sensor_height_) / 2;
140
141 }
142
onEvent(const Event & e)143 Return<void> EmulatedScene::SensorHandler::onEvent(const Event& e) {
144 auto scene = scene_.promote();
145 if (scene.get() == nullptr) {
146 return Void();
147 }
148
149 if (e.sensorType == SensorType::ACCELEROMETER) {
150 // Heuristic approach for deducing the screen
151 // rotation depending on the reported
152 // accelerometer readings. We switch
153 // the screen rotation when one of the
154 // x/y axis gets close enough to the earth
155 // acceleration.
156 const uint32_t earth_accel = 9; // Switch threshold [m/s^2]
157 uint32_t x_accel = e.u.vec3.x;
158 uint32_t y_accel = e.u.vec3.y;
159 if (x_accel == earth_accel) {
160 scene->screen_rotation_ = 270;
161 } else if (x_accel == -earth_accel) {
162 scene->screen_rotation_ = 90;
163 } else if (y_accel == -earth_accel) {
164 scene->screen_rotation_ = 180;
165 } else {
166 scene->screen_rotation_ = 0;
167 }
168 } else {
169 ALOGE("%s: unexpected event received type: %d", __func__, e.sensorType);
170 }
171 return Void();
172 }
173
SetColorFilterXYZ(float rX,float rY,float rZ,float grX,float grY,float grZ,float gbX,float gbY,float gbZ,float bX,float bY,float bZ)174 void EmulatedScene::SetColorFilterXYZ(float rX, float rY, float rZ, float grX,
175 float grY, float grZ, float gbX, float gbY,
176 float gbZ, float bX, float bY, float bZ) {
177 filter_r_[0] = rX;
178 filter_r_[1] = rY;
179 filter_r_[2] = rZ;
180 filter_gr_[0] = grX;
181 filter_gr_[1] = grY;
182 filter_gr_[2] = grZ;
183 filter_gb_[0] = gbX;
184 filter_gb_[1] = gbY;
185 filter_gb_[2] = gbZ;
186 filter_b_[0] = bX;
187 filter_b_[1] = bY;
188 filter_b_[2] = bZ;
189 }
190
SetHour(int hour)191 void EmulatedScene::SetHour(int hour) {
192 ALOGV("Hour set to: %d", hour);
193 hour_ = hour % 24;
194 }
195
GetHour() const196 int EmulatedScene::GetHour() const {
197 return hour_;
198 }
199
SetExposureDuration(float seconds)200 void EmulatedScene::SetExposureDuration(float seconds) {
201 exposure_duration_ = seconds;
202 }
203
CalculateScene(nsecs_t time,int32_t handshake_divider)204 void EmulatedScene::CalculateScene(nsecs_t time, int32_t handshake_divider) {
205 // Calculate time fractions for interpolation
206 int time_idx = hour_ / kTimeStep;
207 int next_time_idx = (time_idx + 1) % (24 / kTimeStep);
208 const nsecs_t kOneHourInNsec = 1e9 * 60 * 60;
209 nsecs_t time_since_idx =
210 (hour_ - time_idx * kTimeStep) * kOneHourInNsec + time;
211 float time_frac = time_since_idx / (float)(kOneHourInNsec * kTimeStep);
212
213 // Determine overall sunlight levels
214 float sun_lux = kSunlight[time_idx] * (1 - time_frac) +
215 kSunlight[next_time_idx] * time_frac;
216 ALOGV("Sun lux: %f", sun_lux);
217
218 float sun_shade_lux = sun_lux * (kDaylightShadeIllum / kDirectSunIllum);
219
220 // Determine sun/shade illumination chromaticity
221 float current_sun_xy[2];
222 float current_shade_xy[2];
223
224 const float *prev_sun_xy, *next_sun_xy;
225 const float *prev_shade_xy, *next_shade_xy;
226 if (kSunlight[time_idx] == kSunsetIllum ||
227 kSunlight[time_idx] == kTwilightIllum) {
228 prev_sun_xy = kSunsetXY;
229 prev_shade_xy = kSunsetXY;
230 } else {
231 prev_sun_xy = kDirectSunlightXY;
232 prev_shade_xy = kDaylightXY;
233 }
234 if (kSunlight[next_time_idx] == kSunsetIllum ||
235 kSunlight[next_time_idx] == kTwilightIllum) {
236 next_sun_xy = kSunsetXY;
237 next_shade_xy = kSunsetXY;
238 } else {
239 next_sun_xy = kDirectSunlightXY;
240 next_shade_xy = kDaylightXY;
241 }
242 current_sun_xy[0] =
243 prev_sun_xy[0] * (1 - time_frac) + next_sun_xy[0] * time_frac;
244 current_sun_xy[1] =
245 prev_sun_xy[1] * (1 - time_frac) + next_sun_xy[1] * time_frac;
246
247 current_shade_xy[0] =
248 prev_shade_xy[0] * (1 - time_frac) + next_shade_xy[0] * time_frac;
249 current_shade_xy[1] =
250 prev_shade_xy[1] * (1 - time_frac) + next_shade_xy[1] * time_frac;
251
252 ALOGV("Sun XY: %f, %f, Shade XY: %f, %f", current_sun_xy[0],
253 current_sun_xy[1], current_shade_xy[0], current_shade_xy[1]);
254
255 // Converting for xyY to XYZ:
256 // X = Y / y * x
257 // Y = Y
258 // Z = Y / y * (1 - x - y);
259 float sun_xyz[3] = {sun_lux / current_sun_xy[1] * current_sun_xy[0], sun_lux,
260 sun_lux / current_sun_xy[1] *
261 (1 - current_sun_xy[0] - current_sun_xy[1])};
262 float sun_shade_xyz[3] = {
263 sun_shade_lux / current_shade_xy[1] * current_shade_xy[0], sun_shade_lux,
264 sun_shade_lux / current_shade_xy[1] *
265 (1 - current_shade_xy[0] - current_shade_xy[1])};
266 ALOGV("Sun XYZ: %f, %f, %f", sun_xyz[0], sun_xyz[1], sun_xyz[2]);
267 ALOGV("Sun shade XYZ: %f, %f, %f", sun_shade_xyz[0], sun_shade_xyz[1],
268 sun_shade_xyz[2]);
269
270 // Determine moonlight levels
271 float moon_lux = kMoonlight[time_idx] * (1 - time_frac) +
272 kMoonlight[next_time_idx] * time_frac;
273 float moonshade_lux = moon_lux * (kDaylightShadeIllum / kDirectSunIllum);
274
275 float moon_xyz[3] = {
276 moon_lux / kMoonlightXY[1] * kMoonlightXY[0], moon_lux,
277 moon_lux / kMoonlightXY[1] * (1 - kMoonlightXY[0] - kMoonlightXY[1])};
278 float moon_shade_xyz[3] = {
279 moonshade_lux / kMoonlightXY[1] * kMoonlightXY[0], moonshade_lux,
280 moonshade_lux / kMoonlightXY[1] * (1 - kMoonlightXY[0] - kMoonlightXY[1])};
281
282 // Determine starlight level
283 const float kClearNightXYZ[3] = {
284 kClearNightIllum / kMoonlightXY[1] * kMoonlightXY[0], kClearNightIllum,
285 kClearNightIllum / kMoonlightXY[1] *
286 (1 - kMoonlightXY[0] - kMoonlightXY[1])};
287
288 // Calculate direct and shaded light
289 float direct_illum_xyz[3] = {
290 sun_xyz[0] + moon_xyz[0] + kClearNightXYZ[0],
291 sun_xyz[1] + moon_xyz[1] + kClearNightXYZ[1],
292 sun_xyz[2] + moon_xyz[2] + kClearNightXYZ[2],
293 };
294
295 float shade_illum_xyz[3] = {kClearNightXYZ[0], kClearNightXYZ[1],
296 kClearNightXYZ[2]};
297
298 shade_illum_xyz[0] += (hour_ < kSunOverhead) ? sun_xyz[0] : sun_shade_xyz[0];
299 shade_illum_xyz[1] += (hour_ < kSunOverhead) ? sun_xyz[1] : sun_shade_xyz[1];
300 shade_illum_xyz[2] += (hour_ < kSunOverhead) ? sun_xyz[2] : sun_shade_xyz[2];
301
302 // Moon up period covers 23->0 transition, shift for simplicity
303 int adj_hour = (hour_ + 12) % 24;
304 int adj_moon_overhead = (kMoonOverhead + 12) % 24;
305 shade_illum_xyz[0] +=
306 (adj_hour < adj_moon_overhead) ? moon_xyz[0] : moon_shade_xyz[0];
307 shade_illum_xyz[1] +=
308 (adj_hour < adj_moon_overhead) ? moon_xyz[1] : moon_shade_xyz[1];
309 shade_illum_xyz[2] +=
310 (adj_hour < adj_moon_overhead) ? moon_xyz[2] : moon_shade_xyz[2];
311
312 ALOGV("Direct XYZ: %f, %f, %f", direct_illum_xyz[0], direct_illum_xyz[1],
313 direct_illum_xyz[2]);
314 ALOGV("Shade XYZ: %f, %f, %f", shade_illum_xyz[0], shade_illum_xyz[1],
315 shade_illum_xyz[2]);
316
317 for (int i = 0; i < NUM_MATERIALS; i++) {
318 // Converting for xyY to XYZ:
319 // X = Y / y * x
320 // Y = Y
321 // Z = Y / y * (1 - x - y);
322 float mat_xyz[3] = {
323 kMaterials_xyY[i][2] / kMaterials_xyY[i][1] * kMaterials_xyY[i][0],
324 kMaterials_xyY[i][2],
325 kMaterials_xyY[i][2] / kMaterials_xyY[i][1] *
326 (1 - kMaterials_xyY[i][0] - kMaterials_xyY[i][1])};
327
328 if (kMaterialsFlags[i] == 0 || kMaterialsFlags[i] & kSky) {
329 mat_xyz[0] *= direct_illum_xyz[0];
330 mat_xyz[1] *= direct_illum_xyz[1];
331 mat_xyz[2] *= direct_illum_xyz[2];
332 } else if (kMaterialsFlags[i] & kShadowed) {
333 mat_xyz[0] *= shade_illum_xyz[0];
334 mat_xyz[1] *= shade_illum_xyz[1];
335 mat_xyz[2] *= shade_illum_xyz[2];
336 } // else if (kMaterialsFlags[i] * kSelfLit), do nothing
337
338 ALOGV("Mat %d XYZ: %f, %f, %f", i, mat_xyz[0], mat_xyz[1], mat_xyz[2]);
339 float lux_to_electrons =
340 sensor_sensitivity_ * exposure_duration_ / (kAperture * kAperture);
341 current_colors_[i * NUM_CHANNELS + 0] =
342 (filter_r_[0] * mat_xyz[0] + filter_r_[1] * mat_xyz[1] +
343 filter_r_[2] * mat_xyz[2]) *
344 lux_to_electrons;
345 current_colors_[i * NUM_CHANNELS + 1] =
346 (filter_gr_[0] * mat_xyz[0] + filter_gr_[1] * mat_xyz[1] +
347 filter_gr_[2] * mat_xyz[2]) *
348 lux_to_electrons;
349 current_colors_[i * NUM_CHANNELS + 2] =
350 (filter_gb_[0] * mat_xyz[0] + filter_gb_[1] * mat_xyz[1] +
351 filter_gb_[2] * mat_xyz[2]) *
352 lux_to_electrons;
353 current_colors_[i * NUM_CHANNELS + 3] =
354 (filter_b_[0] * mat_xyz[0] + filter_b_[1] * mat_xyz[1] +
355 filter_b_[2] * mat_xyz[2]) *
356 lux_to_electrons;
357
358 ALOGV("Color %d RGGB: %d, %d, %d, %d", i,
359 current_colors_[i * NUM_CHANNELS + 0],
360 current_colors_[i * NUM_CHANNELS + 1],
361 current_colors_[i * NUM_CHANNELS + 2],
362 current_colors_[i * NUM_CHANNELS + 3]);
363 }
364 // Shake viewpoint; horizontal and vertical sinusoids at roughly
365 // human handshake frequencies
366 handshake_x_ =
367 (kFreq1Magnitude * std::sin(kHorizShakeFreq1 * time_since_idx) +
368 kFreq2Magnitude * std::sin(kHorizShakeFreq2 * time_since_idx)) *
369 map_div_ * kShakeFraction;
370 if (handshake_divider > 0) {
371 handshake_x_ /= handshake_divider;
372 }
373
374 handshake_y_ = (kFreq1Magnitude * std::sin(kVertShakeFreq1 * time_since_idx) +
375 kFreq2Magnitude * std::sin(kVertShakeFreq2 * time_since_idx)) *
376 map_div_ * kShakeFraction;
377 if (handshake_divider > 0) {
378 handshake_y_ /= handshake_divider;
379 }
380
381 if (sensor_event_queue_.get() != nullptr) {
382 int32_t sensor_orientation = is_front_facing_ ? -sensor_orientation_ : sensor_orientation_;
383 int32_t scene_rotation = ((screen_rotation_ + 360) + sensor_orientation) % 360;
384 switch (scene_rotation) {
385 case 90:
386 current_scene_ = scene_rot90_;
387 break;
388 case 180:
389 current_scene_ = scene_rot180_;
390 break;
391 case 270:
392 current_scene_ = scene_rot270_;
393 break;
394 default:
395 current_scene_ = scene_rot0_;
396 }
397 } else {
398 current_scene_ = scene_rot0_;
399 }
400
401 // Set starting pixel
402 SetReadoutPixel(0, 0);
403 }
404
InitiliazeSceneRotation(bool clock_wise)405 void EmulatedScene::InitiliazeSceneRotation(bool clock_wise) {
406 memcpy(scene_rot0_, kScene, sizeof(scene_rot0_));
407
408 size_t c = 0;
409 for (ssize_t i = kSceneHeight-1; i >= 0; i--) {
410 for (ssize_t j = kSceneWidth-1; j >= 0; j--) {
411 scene_rot180_[c++] = kScene[i*kSceneWidth + j];
412 }
413 }
414
415 c = 0;
416 for (ssize_t i = kSceneWidth-1; i >= 0; i--) {
417 for (size_t j = 0; j < kSceneHeight; j++) {
418 if (clock_wise) {
419 scene_rot90_[c++] = kScene[j*kSceneWidth + i];
420 } else {
421 scene_rot270_[c++] = kScene[j*kSceneWidth + i];
422 }
423 }
424 }
425
426 c = 0;
427 for (size_t i = 0; i < kSceneWidth; i++) {
428 for (ssize_t j = kSceneHeight-1; j >= 0; j--) {
429 if (clock_wise) {
430 scene_rot270_[c++] = kScene[j*kSceneWidth + i];
431 } else {
432 scene_rot90_[c++] = kScene[j*kSceneWidth + i];
433 }
434 }
435 }
436 }
437
InitializeSensorQueue()438 void EmulatedScene::InitializeSensorQueue() {
439 if (sensor_event_queue_.get() != nullptr) {
440 return;
441 }
442
443 sp<ISensorManager> manager = ISensorManager::getService();
444 if (manager == nullptr) {
445 ALOGE("%s: Cannot get ISensorManager", __func__);
446 } else {
447 bool sensor_found = false;
448 manager->getSensorList(
449 [&] (const auto& list, auto result) {
450 if (result != Result::OK) {
451 ALOGE("%s: Failed to retrieve sensor list!", __func__);
452 } else {
453 for (const SensorInfo& it : list) {
454 if (it.type == SensorType::ACCELEROMETER) {
455 sensor_found = true;
456 sensor_handle_ = it.sensorHandle;
457 }
458 }
459 }});
460 if (sensor_found) {
461 manager->createEventQueue(
462 new SensorHandler(this), [&](const auto& q, auto result) {
463 if (result != Result::OK) {
464 ALOGE("%s: Cannot create event queue", __func__);
465 return;
466 }
467 sensor_event_queue_ = q;
468 });
469
470 if (sensor_event_queue_.get() != nullptr) {
471 auto res = sensor_event_queue_->enableSensor(sensor_handle_,
472 ns2us(EmulatedSensor::kSupportedFrameDurationRange[0]), 0/*maxBatchReportLatencyUs*/);
473 if (res.isOk()) {
474 } else {
475 ALOGE("%s: Failed to enable sensor", __func__);
476 }
477 } else {
478 ALOGE("%s: Failed to create event queue", __func__);
479 }
480 }
481 }
482 }
483
SetReadoutPixel(int x,int y)484 void EmulatedScene::SetReadoutPixel(int x, int y) {
485 current_x_ = x;
486 current_y_ = y;
487 sub_x_ = (x + offset_x_ + handshake_x_) % map_div_;
488 sub_y_ = (y + offset_y_ + handshake_y_) % map_div_;
489 scene_x_ = (x + offset_x_ + handshake_x_) / map_div_;
490 scene_y_ = (y + offset_y_ + handshake_y_) / map_div_;
491 scene_idx_ = scene_y_ * kSceneWidth + scene_x_;
492 current_scene_material_ = &(current_colors_[current_scene_[scene_idx_]]);
493 }
494
GetPixelElectrons()495 const uint32_t* EmulatedScene::GetPixelElectrons() {
496 const uint32_t* pixel = current_scene_material_;
497 current_x_++;
498 sub_x_++;
499 if (current_x_ >= sensor_width_) {
500 current_x_ = 0;
501 current_y_++;
502 if (current_y_ >= sensor_height_) current_y_ = 0;
503 SetReadoutPixel(current_x_, current_y_);
504 } else if (sub_x_ > map_div_) {
505 scene_idx_++;
506 scene_x_++;
507 current_scene_material_ = &(current_colors_[current_scene_[scene_idx_]]);
508 sub_x_ = 0;
509 }
510 return pixel;
511 }
512
GetPixelElectronsColumn()513 const uint32_t* EmulatedScene::GetPixelElectronsColumn() {
514 const uint32_t* pixel = current_scene_material_;
515 current_y_++;
516 sub_y_++;
517 if (current_y_ >= sensor_height_) {
518 current_y_ = 0;
519 current_x_++;
520 if (current_x_ >= sensor_width_) current_x_ = 0;
521 SetReadoutPixel(current_x_, current_y_);
522 } else if (sub_y_ > map_div_) {
523 scene_idx_ += kSceneWidth;
524 scene_y_++;
525 current_scene_material_ = &(current_colors_[current_scene_[scene_idx_]]);
526 sub_y_ = 0;
527 }
528 return pixel;
529 }
530
531 // Handshake model constants.
532 // Frequencies measured in a nanosecond timebase
533 const float EmulatedScene::kHorizShakeFreq1 = 2 * M_PI * 2 / 1e9; // 2 Hz
534 const float EmulatedScene::kHorizShakeFreq2 = 2 * M_PI * 13 / 1e9; // 13 Hz
535 const float EmulatedScene::kVertShakeFreq1 = 2 * M_PI * 3 / 1e9; // 3 Hz
536 const float EmulatedScene::kVertShakeFreq2 = 2 * M_PI * 11 / 1e9; // 1 Hz
537 const float EmulatedScene::kFreq1Magnitude = 5;
538 const float EmulatedScene::kFreq2Magnitude = 1;
539 const float EmulatedScene::kShakeFraction =
540 0.03; // As a fraction of a scene tile
541
542 // Aperture of imaging lens
543 const float EmulatedScene::kAperture = 2.8;
544
545 // Sun illumination levels through the day
546 const float EmulatedScene::kSunlight[24 / kTimeStep] = {
547 0, // 00:00
548 0,
549 0,
550 kTwilightIllum, // 06:00
551 kDirectSunIllum,
552 kDirectSunIllum,
553 kDirectSunIllum, // 12:00
554 kDirectSunIllum,
555 kDirectSunIllum,
556 kSunsetIllum, // 18:00
557 kTwilightIllum,
558 0};
559
560 // Moon illumination levels through the day
561 const float EmulatedScene::kMoonlight[24 / kTimeStep] = {
562 kFullMoonIllum, // 00:00
563 kFullMoonIllum,
564 0,
565 0, // 06:00
566 0,
567 0,
568 0, // 12:00
569 0,
570 0,
571 0, // 18:00
572 0,
573 kFullMoonIllum};
574
575 const int EmulatedScene::kSunOverhead = 12;
576 const int EmulatedScene::kMoonOverhead = 0;
577
578 // Used for sun illumination levels
579 const float EmulatedScene::kDirectSunIllum = 100000;
580 const float EmulatedScene::kSunsetIllum = 400;
581 const float EmulatedScene::kTwilightIllum = 4;
582 // Used for moon illumination levels
583 const float EmulatedScene::kFullMoonIllum = 1;
584 // Other illumination levels
585 const float EmulatedScene::kDaylightShadeIllum = 20000;
586 const float EmulatedScene::kClearNightIllum = 2e-3;
587 const float EmulatedScene::kStarIllum = 2e-6;
588 const float EmulatedScene::kLivingRoomIllum = 50;
589
590 const float EmulatedScene::kIncandescentXY[2] = {0.44757f, 0.40745f};
591 const float EmulatedScene::kDirectSunlightXY[2] = {0.34842f, 0.35161f};
592 const float EmulatedScene::kDaylightXY[2] = {0.31271f, 0.32902f};
593 const float EmulatedScene::kNoonSkyXY[2] = {0.346f, 0.359f};
594 const float EmulatedScene::kMoonlightXY[2] = {0.34842f, 0.35161f};
595 const float EmulatedScene::kSunsetXY[2] = {0.527f, 0.413f};
596
597 const uint8_t EmulatedScene::kSelfLit = 0x01;
598 const uint8_t EmulatedScene::kShadowed = 0x02;
599 const uint8_t EmulatedScene::kSky = 0x04;
600
601 // For non-self-lit materials, the Y component is normalized with 1=full
602 // reflectance; for self-lit materials, it's the constant illuminance in lux.
603 const float EmulatedScene::kMaterials_xyY[EmulatedScene::NUM_MATERIALS][3] = {
604 {0.3688f, 0.4501f, .1329f}, // GRASS
605 {0.3688f, 0.4501f, .1329f}, // GRASS_SHADOW
606 {0.3986f, 0.5002f, .4440f}, // HILL
607 {0.3262f, 0.5040f, .2297f}, // WALL
608 {0.4336f, 0.3787f, .1029f}, // ROOF
609 {0.3316f, 0.2544f, .0639f}, // DOOR
610 {0.3425f, 0.3577f, .0887f}, // CHIMNEY
611 {kIncandescentXY[0], kIncandescentXY[1], kLivingRoomIllum}, // WINDOW
612 {kDirectSunlightXY[0], kDirectSunlightXY[1], kDirectSunIllum}, // SUN
613 {kNoonSkyXY[0], kNoonSkyXY[1], kDaylightShadeIllum / kDirectSunIllum}, // SKY
614 {kMoonlightXY[0], kMoonlightXY[1], kFullMoonIllum} // MOON
615 };
616
617 const uint8_t EmulatedScene::kMaterialsFlags[EmulatedScene::NUM_MATERIALS] = {
618 0, kShadowed, kShadowed, kShadowed, kShadowed, kShadowed,
619 kShadowed, kSelfLit, kSelfLit, kSky, kSelfLit,
620 };
621
622 } // namespace android
623