1 /*
2 * Copyright 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "jit.h"
18
19 #include <dlfcn.h>
20
21 #include "art_method-inl.h"
22 #include "base/enums.h"
23 #include "base/file_utils.h"
24 #include "base/logging.h" // For VLOG.
25 #include "base/memfd.h"
26 #include "base/memory_tool.h"
27 #include "base/runtime_debug.h"
28 #include "base/scoped_flock.h"
29 #include "base/utils.h"
30 #include "class_root.h"
31 #include "debugger.h"
32 #include "dex/type_lookup_table.h"
33 #include "gc/space/image_space.h"
34 #include "entrypoints/entrypoint_utils-inl.h"
35 #include "entrypoints/runtime_asm_entrypoints.h"
36 #include "image-inl.h"
37 #include "interpreter/interpreter.h"
38 #include "jit-inl.h"
39 #include "jit_code_cache.h"
40 #include "jni/java_vm_ext.h"
41 #include "mirror/method_handle_impl.h"
42 #include "mirror/var_handle.h"
43 #include "oat_file.h"
44 #include "oat_file_manager.h"
45 #include "oat_quick_method_header.h"
46 #include "profile/profile_boot_info.h"
47 #include "profile/profile_compilation_info.h"
48 #include "profile_saver.h"
49 #include "runtime.h"
50 #include "runtime_options.h"
51 #include "stack.h"
52 #include "stack_map.h"
53 #include "thread-inl.h"
54 #include "thread_list.h"
55
56 using android::base::unique_fd;
57
58 namespace art {
59 namespace jit {
60
61 static constexpr bool kEnableOnStackReplacement = true;
62
63 // Maximum permitted threshold value.
64 static constexpr uint32_t kJitMaxThreshold = std::numeric_limits<uint16_t>::max();
65
66 // Different compilation threshold constants. These can be overridden on the command line.
67
68 // Non-debug default
69 static constexpr uint32_t kJitDefaultCompileThreshold = 20 * kJitSamplesBatchSize;
70 // Fast-debug build.
71 static constexpr uint32_t kJitStressDefaultCompileThreshold = 2 * kJitSamplesBatchSize;
72 // Slow-debug build.
73 static constexpr uint32_t kJitSlowStressDefaultCompileThreshold = 2;
74
75 // Different warm-up threshold constants. These default to the equivalent compile thresholds divided
76 // by 2, but can be overridden at the command-line.
77 static constexpr uint32_t kJitDefaultWarmUpThreshold = kJitDefaultCompileThreshold / 2;
78 static constexpr uint32_t kJitStressDefaultWarmUpThreshold = kJitStressDefaultCompileThreshold / 2;
79 static constexpr uint32_t kJitSlowStressDefaultWarmUpThreshold =
80 kJitSlowStressDefaultCompileThreshold / 2;
81
82 DEFINE_RUNTIME_DEBUG_FLAG(Jit, kSlowMode);
83
84 // JIT compiler
85 void* Jit::jit_library_handle_ = nullptr;
86 JitCompilerInterface* Jit::jit_compiler_ = nullptr;
87 JitCompilerInterface* (*Jit::jit_load_)(void) = nullptr;
88
CreateFromRuntimeArguments(const RuntimeArgumentMap & options)89 JitOptions* JitOptions::CreateFromRuntimeArguments(const RuntimeArgumentMap& options) {
90 auto* jit_options = new JitOptions;
91 jit_options->use_jit_compilation_ = options.GetOrDefault(RuntimeArgumentMap::UseJitCompilation);
92 jit_options->use_tiered_jit_compilation_ =
93 options.GetOrDefault(RuntimeArgumentMap::UseTieredJitCompilation);
94
95 jit_options->code_cache_initial_capacity_ =
96 options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheInitialCapacity);
97 jit_options->code_cache_max_capacity_ =
98 options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheMaxCapacity);
99 jit_options->dump_info_on_shutdown_ =
100 options.Exists(RuntimeArgumentMap::DumpJITInfoOnShutdown);
101 jit_options->profile_saver_options_ =
102 options.GetOrDefault(RuntimeArgumentMap::ProfileSaverOpts);
103 jit_options->thread_pool_pthread_priority_ =
104 options.GetOrDefault(RuntimeArgumentMap::JITPoolThreadPthreadPriority);
105
106 // Set default compile threshold to aide with sanity checking defaults.
107 jit_options->compile_threshold_ =
108 kIsDebugBuild
109 ? (Jit::kSlowMode
110 ? kJitSlowStressDefaultCompileThreshold
111 : kJitStressDefaultCompileThreshold)
112 : kJitDefaultCompileThreshold;
113
114 // When not running in slow-mode, thresholds are quantized to kJitSamplesbatchsize.
115 const uint32_t kJitThresholdStep = Jit::kSlowMode ? 1u : kJitSamplesBatchSize;
116
117 // Set default warm-up threshold to aide with sanity checking defaults.
118 jit_options->warmup_threshold_ =
119 kIsDebugBuild ? (Jit::kSlowMode
120 ? kJitSlowStressDefaultWarmUpThreshold
121 : kJitStressDefaultWarmUpThreshold)
122 : kJitDefaultWarmUpThreshold;
123
124 // Warmup threshold should be less than compile threshold (so long as compile threshold is not
125 // zero == JIT-on-first-use).
126 DCHECK_LT(jit_options->warmup_threshold_, jit_options->compile_threshold_);
127 DCHECK_EQ(RoundUp(jit_options->warmup_threshold_, kJitThresholdStep),
128 jit_options->warmup_threshold_);
129
130 if (options.Exists(RuntimeArgumentMap::JITCompileThreshold)) {
131 jit_options->compile_threshold_ = *options.Get(RuntimeArgumentMap::JITCompileThreshold);
132 }
133 jit_options->compile_threshold_ = RoundUp(jit_options->compile_threshold_, kJitThresholdStep);
134
135 if (options.Exists(RuntimeArgumentMap::JITWarmupThreshold)) {
136 jit_options->warmup_threshold_ = *options.Get(RuntimeArgumentMap::JITWarmupThreshold);
137 }
138 jit_options->warmup_threshold_ = RoundUp(jit_options->warmup_threshold_, kJitThresholdStep);
139
140 if (options.Exists(RuntimeArgumentMap::JITOsrThreshold)) {
141 jit_options->osr_threshold_ = *options.Get(RuntimeArgumentMap::JITOsrThreshold);
142 } else {
143 jit_options->osr_threshold_ = jit_options->compile_threshold_ * 2;
144 if (jit_options->osr_threshold_ > kJitMaxThreshold) {
145 jit_options->osr_threshold_ =
146 RoundDown(kJitMaxThreshold, kJitThresholdStep);
147 }
148 }
149 jit_options->osr_threshold_ = RoundUp(jit_options->osr_threshold_, kJitThresholdStep);
150
151 // Enforce ordering constraints between thresholds if not jit-on-first-use (when the compile
152 // threshold is 0).
153 if (jit_options->compile_threshold_ != 0) {
154 // Clamp thresholds such that OSR > compile > warm-up (see Jit::MaybeCompileMethod).
155 jit_options->osr_threshold_ = std::clamp(jit_options->osr_threshold_,
156 2u * kJitThresholdStep,
157 RoundDown(kJitMaxThreshold, kJitThresholdStep));
158 jit_options->compile_threshold_ = std::clamp(jit_options->compile_threshold_,
159 kJitThresholdStep,
160 jit_options->osr_threshold_ - kJitThresholdStep);
161 jit_options->warmup_threshold_ =
162 std::clamp(jit_options->warmup_threshold_,
163 0u,
164 jit_options->compile_threshold_ - kJitThresholdStep);
165 }
166
167 if (options.Exists(RuntimeArgumentMap::JITPriorityThreadWeight)) {
168 jit_options->priority_thread_weight_ =
169 *options.Get(RuntimeArgumentMap::JITPriorityThreadWeight);
170 if (jit_options->priority_thread_weight_ > jit_options->warmup_threshold_) {
171 LOG(FATAL) << "Priority thread weight is above the warmup threshold.";
172 } else if (jit_options->priority_thread_weight_ == 0) {
173 LOG(FATAL) << "Priority thread weight cannot be 0.";
174 }
175 } else {
176 jit_options->priority_thread_weight_ = std::max(
177 jit_options->warmup_threshold_ / Jit::kDefaultPriorityThreadWeightRatio,
178 static_cast<size_t>(1));
179 }
180
181 if (options.Exists(RuntimeArgumentMap::JITInvokeTransitionWeight)) {
182 jit_options->invoke_transition_weight_ =
183 *options.Get(RuntimeArgumentMap::JITInvokeTransitionWeight);
184 if (jit_options->invoke_transition_weight_ > jit_options->warmup_threshold_) {
185 LOG(FATAL) << "Invoke transition weight is above the warmup threshold.";
186 } else if (jit_options->invoke_transition_weight_ == 0) {
187 LOG(FATAL) << "Invoke transition weight cannot be 0.";
188 }
189 } else {
190 jit_options->invoke_transition_weight_ = std::max(
191 jit_options->warmup_threshold_ / Jit::kDefaultInvokeTransitionWeightRatio,
192 static_cast<size_t>(1));
193 }
194
195 return jit_options;
196 }
197
DumpInfo(std::ostream & os)198 void Jit::DumpInfo(std::ostream& os) {
199 code_cache_->Dump(os);
200 cumulative_timings_.Dump(os);
201 MutexLock mu(Thread::Current(), lock_);
202 memory_use_.PrintMemoryUse(os);
203 }
204
DumpForSigQuit(std::ostream & os)205 void Jit::DumpForSigQuit(std::ostream& os) {
206 DumpInfo(os);
207 ProfileSaver::DumpInstanceInfo(os);
208 }
209
AddTimingLogger(const TimingLogger & logger)210 void Jit::AddTimingLogger(const TimingLogger& logger) {
211 cumulative_timings_.AddLogger(logger);
212 }
213
Jit(JitCodeCache * code_cache,JitOptions * options)214 Jit::Jit(JitCodeCache* code_cache, JitOptions* options)
215 : code_cache_(code_cache),
216 options_(options),
217 boot_completed_lock_("Jit::boot_completed_lock_"),
218 cumulative_timings_("JIT timings"),
219 memory_use_("Memory used for compilation", 16),
220 lock_("JIT memory use lock"),
221 zygote_mapping_methods_(),
222 fd_methods_(-1),
223 fd_methods_size_(0) {}
224
Create(JitCodeCache * code_cache,JitOptions * options)225 Jit* Jit::Create(JitCodeCache* code_cache, JitOptions* options) {
226 if (jit_load_ == nullptr) {
227 LOG(WARNING) << "Not creating JIT: library not loaded";
228 return nullptr;
229 }
230 jit_compiler_ = (jit_load_)();
231 if (jit_compiler_ == nullptr) {
232 LOG(WARNING) << "Not creating JIT: failed to allocate a compiler";
233 return nullptr;
234 }
235 std::unique_ptr<Jit> jit(new Jit(code_cache, options));
236
237 // If the code collector is enabled, check if that still holds:
238 // With 'perf', we want a 1-1 mapping between an address and a method.
239 // We aren't able to keep method pointers live during the instrumentation method entry trampoline
240 // so we will just disable jit-gc if we are doing that.
241 if (code_cache->GetGarbageCollectCode()) {
242 code_cache->SetGarbageCollectCode(!jit_compiler_->GenerateDebugInfo() &&
243 !Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled());
244 }
245
246 VLOG(jit) << "JIT created with initial_capacity="
247 << PrettySize(options->GetCodeCacheInitialCapacity())
248 << ", max_capacity=" << PrettySize(options->GetCodeCacheMaxCapacity())
249 << ", compile_threshold=" << options->GetCompileThreshold()
250 << ", profile_saver_options=" << options->GetProfileSaverOptions();
251
252 // We want to know whether the compiler is compiling baseline, as this
253 // affects how we GC ProfilingInfos.
254 for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
255 if (option == "--baseline") {
256 options->SetUseBaselineCompiler();
257 break;
258 }
259 }
260
261 // Notify native debugger about the classes already loaded before the creation of the jit.
262 jit->DumpTypeInfoForLoadedTypes(Runtime::Current()->GetClassLinker());
263 return jit.release();
264 }
265
266 template <typename T>
LoadSymbol(T * address,const char * name,std::string * error_msg)267 bool Jit::LoadSymbol(T* address, const char* name, std::string* error_msg) {
268 *address = reinterpret_cast<T>(dlsym(jit_library_handle_, name));
269 if (*address == nullptr) {
270 *error_msg = std::string("JIT couldn't find ") + name + std::string(" entry point");
271 return false;
272 }
273 return true;
274 }
275
LoadCompilerLibrary(std::string * error_msg)276 bool Jit::LoadCompilerLibrary(std::string* error_msg) {
277 jit_library_handle_ = dlopen(
278 kIsDebugBuild ? "libartd-compiler.so" : "libart-compiler.so", RTLD_NOW);
279 if (jit_library_handle_ == nullptr) {
280 std::ostringstream oss;
281 oss << "JIT could not load libart-compiler.so: " << dlerror();
282 *error_msg = oss.str();
283 return false;
284 }
285 if (!LoadSymbol(&jit_load_, "jit_load", error_msg)) {
286 dlclose(jit_library_handle_);
287 return false;
288 }
289 return true;
290 }
291
CompileMethod(ArtMethod * method,Thread * self,bool baseline,bool osr,bool prejit)292 bool Jit::CompileMethod(ArtMethod* method, Thread* self, bool baseline, bool osr, bool prejit) {
293 DCHECK(Runtime::Current()->UseJitCompilation());
294 DCHECK(!method->IsRuntimeMethod());
295
296 RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks();
297 // Don't compile the method if it has breakpoints.
298 if (cb->IsMethodBeingInspected(method) && !cb->IsMethodSafeToJit(method)) {
299 VLOG(jit) << "JIT not compiling " << method->PrettyMethod()
300 << " due to not being safe to jit according to runtime-callbacks. For example, there"
301 << " could be breakpoints in this method.";
302 return false;
303 }
304
305 if (!method->IsCompilable()) {
306 DCHECK(method->GetDeclaringClass()->IsObsoleteObject() ||
307 method->IsProxyMethod()) << method->PrettyMethod();
308 VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to method being made "
309 << "obsolete while waiting for JIT task to run. This probably happened due to "
310 << "concurrent structural class redefinition.";
311 return false;
312 }
313
314 // Don't compile the method if we are supposed to be deoptimized.
315 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
316 if (instrumentation->AreAllMethodsDeoptimized() || instrumentation->IsDeoptimized(method)) {
317 VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to deoptimization";
318 return false;
319 }
320
321 JitMemoryRegion* region = GetCodeCache()->GetCurrentRegion();
322 if (osr && GetCodeCache()->IsSharedRegion(*region)) {
323 VLOG(jit) << "JIT not osr compiling "
324 << method->PrettyMethod()
325 << " due to using shared region";
326 return false;
327 }
328
329 // If we get a request to compile a proxy method, we pass the actual Java method
330 // of that proxy method, as the compiler does not expect a proxy method.
331 ArtMethod* method_to_compile = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
332 if (!code_cache_->NotifyCompilationOf(method_to_compile, self, osr, prejit, baseline, region)) {
333 return false;
334 }
335
336 VLOG(jit) << "Compiling method "
337 << ArtMethod::PrettyMethod(method_to_compile)
338 << " osr=" << std::boolalpha << osr
339 << " baseline=" << std::boolalpha << baseline;
340 bool success = jit_compiler_->CompileMethod(self, region, method_to_compile, baseline, osr);
341 code_cache_->DoneCompiling(method_to_compile, self, osr);
342 if (!success) {
343 VLOG(jit) << "Failed to compile method "
344 << ArtMethod::PrettyMethod(method_to_compile)
345 << " osr=" << std::boolalpha << osr;
346 }
347 if (kIsDebugBuild) {
348 if (self->IsExceptionPending()) {
349 mirror::Throwable* exception = self->GetException();
350 LOG(FATAL) << "No pending exception expected after compiling "
351 << ArtMethod::PrettyMethod(method)
352 << ": "
353 << exception->Dump();
354 }
355 }
356 return success;
357 }
358
WaitForWorkersToBeCreated()359 void Jit::WaitForWorkersToBeCreated() {
360 if (thread_pool_ != nullptr) {
361 thread_pool_->WaitForWorkersToBeCreated();
362 }
363 }
364
DeleteThreadPool()365 void Jit::DeleteThreadPool() {
366 Thread* self = Thread::Current();
367 if (thread_pool_ != nullptr) {
368 std::unique_ptr<ThreadPool> pool;
369 {
370 ScopedSuspendAll ssa(__FUNCTION__);
371 // Clear thread_pool_ field while the threads are suspended.
372 // A mutator in the 'AddSamples' method will check against it.
373 pool = std::move(thread_pool_);
374 }
375
376 // When running sanitized, let all tasks finish to not leak. Otherwise just clear the queue.
377 if (!kRunningOnMemoryTool) {
378 pool->StopWorkers(self);
379 pool->RemoveAllTasks(self);
380 }
381 // We could just suspend all threads, but we know those threads
382 // will finish in a short period, so it's not worth adding a suspend logic
383 // here. Besides, this is only done for shutdown.
384 pool->Wait(self, false, false);
385 }
386 }
387
StartProfileSaver(const std::string & filename,const std::vector<std::string> & code_paths)388 void Jit::StartProfileSaver(const std::string& filename,
389 const std::vector<std::string>& code_paths) {
390 if (options_->GetSaveProfilingInfo()) {
391 ProfileSaver::Start(options_->GetProfileSaverOptions(), filename, code_cache_, code_paths);
392 }
393 }
394
StopProfileSaver()395 void Jit::StopProfileSaver() {
396 if (options_->GetSaveProfilingInfo() && ProfileSaver::IsStarted()) {
397 ProfileSaver::Stop(options_->DumpJitInfoOnShutdown());
398 }
399 }
400
JitAtFirstUse()401 bool Jit::JitAtFirstUse() {
402 return HotMethodThreshold() == 0;
403 }
404
CanInvokeCompiledCode(ArtMethod * method)405 bool Jit::CanInvokeCompiledCode(ArtMethod* method) {
406 return code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode());
407 }
408
~Jit()409 Jit::~Jit() {
410 DCHECK(!options_->GetSaveProfilingInfo() || !ProfileSaver::IsStarted());
411 if (options_->DumpJitInfoOnShutdown()) {
412 DumpInfo(LOG_STREAM(INFO));
413 Runtime::Current()->DumpDeoptimizations(LOG_STREAM(INFO));
414 }
415 DeleteThreadPool();
416 if (jit_compiler_ != nullptr) {
417 delete jit_compiler_;
418 jit_compiler_ = nullptr;
419 }
420 if (jit_library_handle_ != nullptr) {
421 dlclose(jit_library_handle_);
422 jit_library_handle_ = nullptr;
423 }
424 }
425
NewTypeLoadedIfUsingJit(mirror::Class * type)426 void Jit::NewTypeLoadedIfUsingJit(mirror::Class* type) {
427 if (!Runtime::Current()->UseJitCompilation()) {
428 // No need to notify if we only use the JIT to save profiles.
429 return;
430 }
431 jit::Jit* jit = Runtime::Current()->GetJit();
432 if (jit->jit_compiler_->GenerateDebugInfo()) {
433 jit_compiler_->TypesLoaded(&type, 1);
434 }
435 }
436
DumpTypeInfoForLoadedTypes(ClassLinker * linker)437 void Jit::DumpTypeInfoForLoadedTypes(ClassLinker* linker) {
438 struct CollectClasses : public ClassVisitor {
439 bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
440 classes_.push_back(klass.Ptr());
441 return true;
442 }
443 std::vector<mirror::Class*> classes_;
444 };
445
446 if (jit_compiler_->GenerateDebugInfo()) {
447 ScopedObjectAccess so(Thread::Current());
448
449 CollectClasses visitor;
450 linker->VisitClasses(&visitor);
451 jit_compiler_->TypesLoaded(visitor.classes_.data(), visitor.classes_.size());
452 }
453 }
454
455 extern "C" void art_quick_osr_stub(void** stack,
456 size_t stack_size_in_bytes,
457 const uint8_t* native_pc,
458 JValue* result,
459 const char* shorty,
460 Thread* self);
461
PrepareForOsr(ArtMethod * method,uint32_t dex_pc,uint32_t * vregs)462 OsrData* Jit::PrepareForOsr(ArtMethod* method, uint32_t dex_pc, uint32_t* vregs) {
463 if (!kEnableOnStackReplacement) {
464 return nullptr;
465 }
466
467 // Cheap check if the method has been compiled already. That's an indicator that we should
468 // osr into it.
469 if (!GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
470 return nullptr;
471 }
472
473 // Fetch some data before looking up for an OSR method. We don't want thread
474 // suspension once we hold an OSR method, as the JIT code cache could delete the OSR
475 // method while we are being suspended.
476 CodeItemDataAccessor accessor(method->DexInstructionData());
477 const size_t number_of_vregs = accessor.RegistersSize();
478 std::string method_name(VLOG_IS_ON(jit) ? method->PrettyMethod() : "");
479 OsrData* osr_data = nullptr;
480
481 {
482 ScopedAssertNoThreadSuspension sts("Holding OSR method");
483 const OatQuickMethodHeader* osr_method = GetCodeCache()->LookupOsrMethodHeader(method);
484 if (osr_method == nullptr) {
485 // No osr method yet, just return to the interpreter.
486 return nullptr;
487 }
488
489 CodeInfo code_info(osr_method);
490
491 // Find stack map starting at the target dex_pc.
492 StackMap stack_map = code_info.GetOsrStackMapForDexPc(dex_pc);
493 if (!stack_map.IsValid()) {
494 // There is no OSR stack map for this dex pc offset. Just return to the interpreter in the
495 // hope that the next branch has one.
496 return nullptr;
497 }
498
499 // We found a stack map, now fill the frame with dex register values from the interpreter's
500 // shadow frame.
501 DexRegisterMap vreg_map = code_info.GetDexRegisterMapOf(stack_map);
502 DCHECK_EQ(vreg_map.size(), number_of_vregs);
503
504 size_t frame_size = osr_method->GetFrameSizeInBytes();
505
506 // Allocate memory to put shadow frame values. The osr stub will copy that memory to
507 // stack.
508 // Note that we could pass the shadow frame to the stub, and let it copy the values there,
509 // but that is engineering complexity not worth the effort for something like OSR.
510 osr_data = reinterpret_cast<OsrData*>(malloc(sizeof(OsrData) + frame_size));
511 if (osr_data == nullptr) {
512 return nullptr;
513 }
514 memset(osr_data, 0, sizeof(OsrData) + frame_size);
515 osr_data->frame_size = frame_size;
516
517 // Art ABI: ArtMethod is at the bottom of the stack.
518 osr_data->memory[0] = method;
519
520 if (vreg_map.empty()) {
521 // If we don't have a dex register map, then there are no live dex registers at
522 // this dex pc.
523 } else {
524 for (uint16_t vreg = 0; vreg < number_of_vregs; ++vreg) {
525 DexRegisterLocation::Kind location = vreg_map[vreg].GetKind();
526 if (location == DexRegisterLocation::Kind::kNone) {
527 // Dex register is dead or uninitialized.
528 continue;
529 }
530
531 if (location == DexRegisterLocation::Kind::kConstant) {
532 // We skip constants because the compiled code knows how to handle them.
533 continue;
534 }
535
536 DCHECK_EQ(location, DexRegisterLocation::Kind::kInStack);
537
538 int32_t vreg_value = vregs[vreg];
539 int32_t slot_offset = vreg_map[vreg].GetStackOffsetInBytes();
540 DCHECK_LT(slot_offset, static_cast<int32_t>(frame_size));
541 DCHECK_GT(slot_offset, 0);
542 (reinterpret_cast<int32_t*>(osr_data->memory))[slot_offset / sizeof(int32_t)] = vreg_value;
543 }
544 }
545
546 osr_data->native_pc = stack_map.GetNativePcOffset(kRuntimeISA) +
547 osr_method->GetEntryPoint();
548 VLOG(jit) << "Jumping to "
549 << method_name
550 << "@"
551 << std::hex << reinterpret_cast<uintptr_t>(osr_data->native_pc);
552 }
553 return osr_data;
554 }
555
MaybeDoOnStackReplacement(Thread * thread,ArtMethod * method,uint32_t dex_pc,int32_t dex_pc_offset,JValue * result)556 bool Jit::MaybeDoOnStackReplacement(Thread* thread,
557 ArtMethod* method,
558 uint32_t dex_pc,
559 int32_t dex_pc_offset,
560 JValue* result) {
561 Jit* jit = Runtime::Current()->GetJit();
562 if (jit == nullptr) {
563 return false;
564 }
565
566 if (UNLIKELY(__builtin_frame_address(0) < thread->GetStackEnd())) {
567 // Don't attempt to do an OSR if we are close to the stack limit. Since
568 // the interpreter frames are still on stack, OSR has the potential
569 // to stack overflow even for a simple loop.
570 // b/27094810.
571 return false;
572 }
573
574 // Get the actual Java method if this method is from a proxy class. The compiler
575 // and the JIT code cache do not expect methods from proxy classes.
576 method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
577
578 // Before allowing the jump, make sure no code is actively inspecting the method to avoid
579 // jumping from interpreter to OSR while e.g. single stepping. Note that we could selectively
580 // disable OSR when single stepping, but that's currently hard to know at this point.
581 if (Runtime::Current()->GetRuntimeCallbacks()->IsMethodBeingInspected(method)) {
582 return false;
583 }
584
585 ShadowFrame* shadow_frame = thread->GetManagedStack()->GetTopShadowFrame();
586 OsrData* osr_data = jit->PrepareForOsr(method,
587 dex_pc + dex_pc_offset,
588 shadow_frame->GetVRegArgs(0));
589
590 if (osr_data == nullptr) {
591 return false;
592 }
593
594 {
595 thread->PopShadowFrame();
596 ManagedStack fragment;
597 thread->PushManagedStackFragment(&fragment);
598 (*art_quick_osr_stub)(osr_data->memory,
599 osr_data->frame_size,
600 osr_data->native_pc,
601 result,
602 method->GetShorty(),
603 thread);
604
605 if (UNLIKELY(thread->GetException() == Thread::GetDeoptimizationException())) {
606 thread->DeoptimizeWithDeoptimizationException(result);
607 }
608 thread->PopManagedStackFragment(fragment);
609 }
610 free(osr_data);
611 thread->PushShadowFrame(shadow_frame);
612 VLOG(jit) << "Done running OSR code for " << method->PrettyMethod();
613 return true;
614 }
615
AddMemoryUsage(ArtMethod * method,size_t bytes)616 void Jit::AddMemoryUsage(ArtMethod* method, size_t bytes) {
617 if (bytes > 4 * MB) {
618 LOG(INFO) << "Compiler allocated "
619 << PrettySize(bytes)
620 << " to compile "
621 << ArtMethod::PrettyMethod(method);
622 }
623 MutexLock mu(Thread::Current(), lock_);
624 memory_use_.AddValue(bytes);
625 }
626
NotifyZygoteCompilationDone()627 void Jit::NotifyZygoteCompilationDone() {
628 if (fd_methods_ == -1) {
629 return;
630 }
631
632 size_t offset = 0;
633 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
634 const ImageHeader& header = space->GetImageHeader();
635 const ImageSection& section = header.GetMethodsSection();
636 // Because mremap works at page boundaries, we can only handle methods
637 // within a page range. For methods that falls above or below the range,
638 // the child processes will copy their contents to their private mapping
639 // in `child_mapping_methods`. See `MapBootImageMethods`.
640 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize);
641 uint8_t* page_end =
642 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize);
643 if (page_end > page_start) {
644 uint64_t capacity = page_end - page_start;
645 memcpy(zygote_mapping_methods_.Begin() + offset, page_start, capacity);
646 offset += capacity;
647 }
648 }
649
650 // Do an msync to ensure we are not affected by writes still being in caches.
651 if (msync(zygote_mapping_methods_.Begin(), fd_methods_size_, MS_SYNC) != 0) {
652 PLOG(WARNING) << "Failed to sync boot image methods memory";
653 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure);
654 return;
655 }
656
657 // We don't need the shared mapping anymore, and we need to drop it in case
658 // the file hasn't been sealed writable.
659 zygote_mapping_methods_ = MemMap::Invalid();
660
661 // Seal writes now. Zygote and children will map the memory private in order
662 // to write to it.
663 if (fcntl(fd_methods_, F_ADD_SEALS, F_SEAL_SEAL | F_SEAL_WRITE) == -1) {
664 PLOG(WARNING) << "Failed to seal boot image methods file descriptor";
665 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure);
666 return;
667 }
668
669 std::string error_str;
670 MemMap child_mapping_methods = MemMap::MapFile(
671 fd_methods_size_,
672 PROT_READ | PROT_WRITE,
673 MAP_PRIVATE,
674 fd_methods_,
675 /* start= */ 0,
676 /* low_4gb= */ false,
677 "boot-image-methods",
678 &error_str);
679
680 if (!child_mapping_methods.IsValid()) {
681 LOG(WARNING) << "Failed to create child mapping of boot image methods: " << error_str;
682 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedFailure);
683 return;
684 }
685
686 // Ensure the contents are the same as before: there was a window between
687 // the memcpy and the sealing where other processes could have changed the
688 // contents.
689 // Note this would not be needed if we could have used F_SEAL_FUTURE_WRITE,
690 // see b/143833776.
691 offset = 0;
692 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
693 const ImageHeader& header = space->GetImageHeader();
694 const ImageSection& section = header.GetMethodsSection();
695 // Because mremap works at page boundaries, we can only handle methods
696 // within a page range. For methods that falls above or below the range,
697 // the child processes will copy their contents to their private mapping
698 // in `child_mapping_methods`. See `MapBootImageMethods`.
699 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize);
700 uint8_t* page_end =
701 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize);
702 if (page_end > page_start) {
703 uint64_t capacity = page_end - page_start;
704 if (memcmp(child_mapping_methods.Begin() + offset, page_start, capacity) != 0) {
705 LOG(WARNING) << "Contents differ in boot image methods data";
706 code_cache_->GetZygoteMap()->SetCompilationState(
707 ZygoteCompilationState::kNotifiedFailure);
708 return;
709 }
710 offset += capacity;
711 }
712 }
713
714 // Future spawned processes don't need the fd anymore.
715 fd_methods_.reset();
716
717 // In order to have the zygote and children share the memory, we also remap
718 // the memory into the zygote process.
719 offset = 0;
720 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
721 const ImageHeader& header = space->GetImageHeader();
722 const ImageSection& section = header.GetMethodsSection();
723 // Because mremap works at page boundaries, we can only handle methods
724 // within a page range. For methods that falls above or below the range,
725 // the child processes will copy their contents to their private mapping
726 // in `child_mapping_methods`. See `MapBootImageMethods`.
727 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize);
728 uint8_t* page_end =
729 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize);
730 if (page_end > page_start) {
731 uint64_t capacity = page_end - page_start;
732 if (mremap(child_mapping_methods.Begin() + offset,
733 capacity,
734 capacity,
735 MREMAP_FIXED | MREMAP_MAYMOVE,
736 page_start) == MAP_FAILED) {
737 // Failing to remap is safe as the process will just use the old
738 // contents.
739 PLOG(WARNING) << "Failed mremap of boot image methods of " << space->GetImageFilename();
740 }
741 offset += capacity;
742 }
743 }
744
745 LOG(INFO) << "Successfully notified child processes on sharing boot image methods";
746
747 // Mark that compilation of boot classpath is done, and memory can now be
748 // shared. Other processes will pick up this information.
749 code_cache_->GetZygoteMap()->SetCompilationState(ZygoteCompilationState::kNotifiedOk);
750
751 // The private mapping created for this process has been mremaped. We can
752 // reset it.
753 child_mapping_methods.Reset();
754 }
755
756 class JitCompileTask final : public Task {
757 public:
758 enum class TaskKind {
759 kAllocateProfile,
760 kCompile,
761 kCompileBaseline,
762 kCompileOsr,
763 kPreCompile,
764 };
765
JitCompileTask(ArtMethod * method,TaskKind kind)766 JitCompileTask(ArtMethod* method, TaskKind kind) : method_(method), kind_(kind), klass_(nullptr) {
767 ScopedObjectAccess soa(Thread::Current());
768 // For a non-bootclasspath class, add a global ref to the class to prevent class unloading
769 // until compilation is done.
770 // When we precompile, this is either with boot classpath methods, or main
771 // class loader methods, so we don't need to keep a global reference.
772 if (method->GetDeclaringClass()->GetClassLoader() != nullptr &&
773 kind_ != TaskKind::kPreCompile) {
774 klass_ = soa.Vm()->AddGlobalRef(soa.Self(), method_->GetDeclaringClass());
775 CHECK(klass_ != nullptr);
776 }
777 }
778
~JitCompileTask()779 ~JitCompileTask() {
780 if (klass_ != nullptr) {
781 ScopedObjectAccess soa(Thread::Current());
782 soa.Vm()->DeleteGlobalRef(soa.Self(), klass_);
783 }
784 }
785
Run(Thread * self)786 void Run(Thread* self) override {
787 {
788 ScopedObjectAccess soa(self);
789 switch (kind_) {
790 case TaskKind::kPreCompile:
791 case TaskKind::kCompile:
792 case TaskKind::kCompileBaseline:
793 case TaskKind::kCompileOsr: {
794 Runtime::Current()->GetJit()->CompileMethod(
795 method_,
796 self,
797 /* baseline= */ (kind_ == TaskKind::kCompileBaseline),
798 /* osr= */ (kind_ == TaskKind::kCompileOsr),
799 /* prejit= */ (kind_ == TaskKind::kPreCompile));
800 break;
801 }
802 case TaskKind::kAllocateProfile: {
803 if (ProfilingInfo::Create(self, method_, /* retry_allocation= */ true)) {
804 VLOG(jit) << "Start profiling " << ArtMethod::PrettyMethod(method_);
805 }
806 break;
807 }
808 }
809 }
810 ProfileSaver::NotifyJitActivity();
811 }
812
Finalize()813 void Finalize() override {
814 delete this;
815 }
816
817 private:
818 ArtMethod* const method_;
819 const TaskKind kind_;
820 jobject klass_;
821
822 DISALLOW_IMPLICIT_CONSTRUCTORS(JitCompileTask);
823 };
824
GetProfileFile(const std::string & dex_location)825 static std::string GetProfileFile(const std::string& dex_location) {
826 // Hardcoded assumption where the profile file is.
827 // TODO(ngeoffray): this is brittle and we would need to change change if we
828 // wanted to do more eager JITting of methods in a profile. This is
829 // currently only for system server.
830 return dex_location + ".prof";
831 }
832
GetBootProfileFile(const std::string & profile)833 static std::string GetBootProfileFile(const std::string& profile) {
834 // The boot profile can be found next to the compilation profile, with a
835 // different extension.
836 return ReplaceFileExtension(profile, "bprof");
837 }
838
839 /**
840 * A JIT task to run after all profile compilation is done.
841 */
842 class JitDoneCompilingProfileTask final : public SelfDeletingTask {
843 public:
JitDoneCompilingProfileTask(const std::vector<const DexFile * > & dex_files)844 explicit JitDoneCompilingProfileTask(const std::vector<const DexFile*>& dex_files)
845 : dex_files_(dex_files) {}
846
Run(Thread * self ATTRIBUTE_UNUSED)847 void Run(Thread* self ATTRIBUTE_UNUSED) override {
848 // Madvise DONTNEED dex files now that we're done compiling methods.
849 for (const DexFile* dex_file : dex_files_) {
850 if (IsAddressKnownBackedByFileOrShared(dex_file->Begin())) {
851 int result = madvise(const_cast<uint8_t*>(AlignDown(dex_file->Begin(), kPageSize)),
852 RoundUp(dex_file->Size(), kPageSize),
853 MADV_DONTNEED);
854 if (result == -1) {
855 PLOG(WARNING) << "Madvise failed";
856 }
857 }
858 }
859
860 if (Runtime::Current()->IsZygote()) {
861 // Record that we are done compiling the profile.
862 Runtime::Current()->GetJit()->GetCodeCache()->GetZygoteMap()->SetCompilationState(
863 ZygoteCompilationState::kDone);
864 }
865 }
866
867 private:
868 std::vector<const DexFile*> dex_files_;
869
870 DISALLOW_COPY_AND_ASSIGN(JitDoneCompilingProfileTask);
871 };
872
873 /**
874 * A JIT task to run Java verification of boot classpath classes that were not
875 * verified at compile-time.
876 */
877 class ZygoteVerificationTask final : public Task {
878 public:
ZygoteVerificationTask()879 ZygoteVerificationTask() {}
880
Run(Thread * self)881 void Run(Thread* self) override {
882 // We are going to load class and run verification, which may also need to load
883 // classes. If the thread cannot load classes (typically when the runtime is
884 // debuggable), then just return.
885 if (!self->CanLoadClasses()) {
886 return;
887 }
888 Runtime* runtime = Runtime::Current();
889 ClassLinker* linker = runtime->GetClassLinker();
890 const std::vector<const DexFile*>& boot_class_path =
891 runtime->GetClassLinker()->GetBootClassPath();
892 ScopedObjectAccess soa(self);
893 StackHandleScope<1> hs(self);
894 MutableHandle<mirror::Class> klass = hs.NewHandle<mirror::Class>(nullptr);
895 uint64_t start_ns = ThreadCpuNanoTime();
896 uint64_t number_of_classes = 0;
897 for (const DexFile* dex_file : boot_class_path) {
898 if (dex_file->GetOatDexFile() != nullptr &&
899 dex_file->GetOatDexFile()->GetOatFile() != nullptr) {
900 // If backed by an .oat file, we have already run verification at
901 // compile-time. Note that some classes may still have failed
902 // verification there if they reference updatable mainline module
903 // classes.
904 continue;
905 }
906 for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) {
907 const dex::ClassDef& class_def = dex_file->GetClassDef(i);
908 const char* descriptor = dex_file->GetClassDescriptor(class_def);
909 ScopedNullHandle<mirror::ClassLoader> null_loader;
910 klass.Assign(linker->FindClass(self, descriptor, null_loader));
911 if (klass == nullptr) {
912 self->ClearException();
913 LOG(WARNING) << "Could not find " << descriptor;
914 continue;
915 }
916 ++number_of_classes;
917 if (linker->VerifyClass(self, klass) == verifier::FailureKind::kHardFailure) {
918 DCHECK(self->IsExceptionPending());
919 LOG(FATAL) << "Methods in the boot classpath failed to verify: "
920 << self->GetException()->Dump();
921 }
922 CHECK(!self->IsExceptionPending());
923 }
924 }
925 LOG(INFO) << "Verified "
926 << number_of_classes
927 << " classes from mainline modules in "
928 << PrettyDuration(ThreadCpuNanoTime() - start_ns);
929 }
930 };
931
932 class ZygoteTask final : public Task {
933 public:
ZygoteTask()934 ZygoteTask() {}
935
Run(Thread * self)936 void Run(Thread* self) override {
937 Runtime* runtime = Runtime::Current();
938 uint32_t added_to_queue = 0;
939 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
940 const std::string& profile_file = space->GetProfileFile();
941 if (profile_file.empty()) {
942 continue;
943 }
944 LOG(INFO) << "JIT Zygote looking at profile " << profile_file;
945
946 const std::vector<const DexFile*>& boot_class_path =
947 runtime->GetClassLinker()->GetBootClassPath();
948 ScopedNullHandle<mirror::ClassLoader> null_handle;
949 // We add to the queue for zygote so that we can fork processes in-between
950 // compilations.
951 if (Runtime::Current()->IsPrimaryZygote()) {
952 std::string boot_profile = GetBootProfileFile(profile_file);
953 // We avoid doing compilation at boot for the secondary zygote, as apps
954 // forked from it are not critical for boot.
955 added_to_queue += runtime->GetJit()->CompileMethodsFromBootProfile(
956 self, boot_class_path, boot_profile, null_handle, /* add_to_queue= */ true);
957 }
958 added_to_queue += runtime->GetJit()->CompileMethodsFromProfile(
959 self, boot_class_path, profile_file, null_handle, /* add_to_queue= */ true);
960 }
961
962 JitCodeCache* code_cache = runtime->GetJit()->GetCodeCache();
963 code_cache->GetZygoteMap()->Initialize(added_to_queue);
964 }
965
Finalize()966 void Finalize() override {
967 delete this;
968 }
969
970 private:
971 DISALLOW_COPY_AND_ASSIGN(ZygoteTask);
972 };
973
974 class JitProfileTask final : public Task {
975 public:
JitProfileTask(const std::vector<std::unique_ptr<const DexFile>> & dex_files,jobject class_loader)976 JitProfileTask(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
977 jobject class_loader) {
978 ScopedObjectAccess soa(Thread::Current());
979 StackHandleScope<1> hs(soa.Self());
980 Handle<mirror::ClassLoader> h_loader(hs.NewHandle(
981 soa.Decode<mirror::ClassLoader>(class_loader)));
982 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
983 for (const auto& dex_file : dex_files) {
984 dex_files_.push_back(dex_file.get());
985 // Register the dex file so that we can guarantee it doesn't get deleted
986 // while reading it during the task.
987 class_linker->RegisterDexFile(*dex_file.get(), h_loader.Get());
988 }
989 // We also create our own global ref to use this class loader later.
990 class_loader_ = soa.Vm()->AddGlobalRef(soa.Self(), h_loader.Get());
991 }
992
Run(Thread * self)993 void Run(Thread* self) override {
994 ScopedObjectAccess soa(self);
995 StackHandleScope<1> hs(self);
996 Handle<mirror::ClassLoader> loader = hs.NewHandle<mirror::ClassLoader>(
997 soa.Decode<mirror::ClassLoader>(class_loader_));
998
999 std::string profile = GetProfileFile(dex_files_[0]->GetLocation());
1000 std::string boot_profile = GetBootProfileFile(profile);
1001
1002 Jit* jit = Runtime::Current()->GetJit();
1003
1004 jit->CompileMethodsFromBootProfile(
1005 self,
1006 dex_files_,
1007 boot_profile,
1008 loader,
1009 /* add_to_queue= */ false);
1010
1011 jit->CompileMethodsFromProfile(
1012 self,
1013 dex_files_,
1014 profile,
1015 loader,
1016 /* add_to_queue= */ true);
1017 }
1018
Finalize()1019 void Finalize() override {
1020 delete this;
1021 }
1022
~JitProfileTask()1023 ~JitProfileTask() {
1024 ScopedObjectAccess soa(Thread::Current());
1025 soa.Vm()->DeleteGlobalRef(soa.Self(), class_loader_);
1026 }
1027
1028 private:
1029 std::vector<const DexFile*> dex_files_;
1030 jobject class_loader_;
1031
1032 DISALLOW_COPY_AND_ASSIGN(JitProfileTask);
1033 };
1034
CopyIfDifferent(void * s1,const void * s2,size_t n)1035 static void CopyIfDifferent(void* s1, const void* s2, size_t n) {
1036 if (memcmp(s1, s2, n) != 0) {
1037 memcpy(s1, s2, n);
1038 }
1039 }
1040
MapBootImageMethods()1041 void Jit::MapBootImageMethods() {
1042 if (Runtime::Current()->IsJavaDebuggable()) {
1043 LOG(INFO) << "Not mapping boot image methods due to process being debuggable";
1044 return;
1045 }
1046 CHECK_NE(fd_methods_.get(), -1);
1047 if (!code_cache_->GetZygoteMap()->CanMapBootImageMethods()) {
1048 LOG(WARNING) << "Not mapping boot image methods due to error from zygote";
1049 // We don't need the fd anymore.
1050 fd_methods_.reset();
1051 return;
1052 }
1053
1054 std::string error_str;
1055 MemMap child_mapping_methods = MemMap::MapFile(
1056 fd_methods_size_,
1057 PROT_READ | PROT_WRITE,
1058 MAP_PRIVATE,
1059 fd_methods_,
1060 /* start= */ 0,
1061 /* low_4gb= */ false,
1062 "boot-image-methods",
1063 &error_str);
1064
1065 // We don't need the fd anymore.
1066 fd_methods_.reset();
1067
1068 if (!child_mapping_methods.IsValid()) {
1069 LOG(WARNING) << "Failed to create child mapping of boot image methods: " << error_str;
1070 return;
1071 }
1072 size_t offset = 0;
1073 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1074 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
1075 const ImageHeader& header = space->GetImageHeader();
1076 const ImageSection& section = header.GetMethodsSection();
1077 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize);
1078 uint8_t* page_end =
1079 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize);
1080 if (page_end <= page_start) {
1081 // Section doesn't contain one aligned entire page.
1082 continue;
1083 }
1084 uint64_t capacity = page_end - page_start;
1085 // Walk over methods in the boot image, and check for ones whose class is
1086 // not initialized in the process, but are in the zygote process. For
1087 // such methods, we need their entrypoints to be stubs that do the
1088 // initialization check.
1089 header.VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
1090 if (method.IsRuntimeMethod()) {
1091 return;
1092 }
1093 if (method.GetDeclaringClassUnchecked()->IsVisiblyInitialized() ||
1094 !method.IsStatic() ||
1095 method.IsConstructor()) {
1096 // Method does not need any stub.
1097 return;
1098 }
1099
1100 // We are going to mremap the child mapping into the image:
1101 //
1102 // ImageSection ChildMappingMethods
1103 //
1104 // section start --> -----------
1105 // | |
1106 // | |
1107 // page_start --> | | <----- -----------
1108 // | | | |
1109 // | | | |
1110 // | | | |
1111 // | | | |
1112 // | | | |
1113 // | | | |
1114 // | | | |
1115 // page_end --> | | <----- -----------
1116 // | |
1117 // section end --> -----------
1118
1119
1120 uint8_t* pointer = reinterpret_cast<uint8_t*>(&method);
1121 // Note: We could refactor this to only check if the ArtMethod entrypoint is inside the
1122 // page region. This would remove the need for the edge case handling below.
1123 if (pointer >= page_start && pointer + sizeof(ArtMethod) < page_end) {
1124 // For all the methods in the mapping, put the entrypoint to the
1125 // resolution stub.
1126 ArtMethod* new_method = reinterpret_cast<ArtMethod*>(
1127 child_mapping_methods.Begin() + offset + (pointer - page_start));
1128 const void* code = new_method->GetEntryPointFromQuickCompiledCode();
1129 if (!class_linker->IsQuickGenericJniStub(code) &&
1130 !class_linker->IsQuickToInterpreterBridge(code) &&
1131 !class_linker->IsQuickResolutionStub(code)) {
1132 LOG(INFO) << "Putting back the resolution stub to an ArtMethod";
1133 new_method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
1134 }
1135 } else if (pointer < page_start && (pointer + sizeof(ArtMethod)) > page_start) {
1136 LOG(INFO) << "Copying parts of the contents of an ArtMethod spanning page_start";
1137 // If the method spans `page_start`, copy the contents of the child
1138 // into the pages we are going to remap into the image.
1139 //
1140 // section start --> -----------
1141 // | |
1142 // | |
1143 // page_start --> |/////////| -----------
1144 // |/////////| -> copy -> |/////////|
1145 // | | | |
1146 //
1147 CopyIfDifferent(child_mapping_methods.Begin() + offset,
1148 page_start,
1149 pointer + sizeof(ArtMethod) - page_start);
1150 } else if (pointer < page_end && (pointer + sizeof(ArtMethod)) > page_end) {
1151 LOG(INFO) << "Copying parts of the contents of an ArtMethod spanning page_end";
1152 // If the method spans `page_end`, copy the contents of the child
1153 // into the pages we are going to remap into the image.
1154 //
1155 // | | | |
1156 // |/////////| -> copy -> |/////////|
1157 // page_end --> |/////////| -----------
1158 // | |
1159 // section end --> -----------
1160 //
1161 size_t bytes_to_copy = (page_end - pointer);
1162 CopyIfDifferent(child_mapping_methods.Begin() + offset + capacity - bytes_to_copy,
1163 page_end - bytes_to_copy,
1164 bytes_to_copy);
1165 }
1166 }, space->Begin(), kRuntimePointerSize);
1167
1168 // Map the memory in the boot image range.
1169 if (mremap(child_mapping_methods.Begin() + offset,
1170 capacity,
1171 capacity,
1172 MREMAP_FIXED | MREMAP_MAYMOVE,
1173 page_start) == MAP_FAILED) {
1174 PLOG(WARNING) << "Fail to mremap boot image methods for " << space->GetImageFilename();
1175 }
1176 offset += capacity;
1177 }
1178
1179 // The private mapping created for this process has been mremaped. We can
1180 // reset it.
1181 child_mapping_methods.Reset();
1182 LOG(INFO) << "Successfully mapped boot image methods";
1183 }
1184
1185 // Return whether a boot image has a profile. This means we'll need to pre-JIT
1186 // methods in that profile for performance.
HasImageWithProfile()1187 static bool HasImageWithProfile() {
1188 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
1189 if (!space->GetProfileFile().empty()) {
1190 return true;
1191 }
1192 }
1193 return false;
1194 }
1195
CreateThreadPool()1196 void Jit::CreateThreadPool() {
1197 // There is a DCHECK in the 'AddSamples' method to ensure the tread pool
1198 // is not null when we instrument.
1199
1200 // We need peers as we may report the JIT thread, e.g., in the debugger.
1201 constexpr bool kJitPoolNeedsPeers = true;
1202 thread_pool_.reset(new ThreadPool("Jit thread pool", 1, kJitPoolNeedsPeers));
1203
1204 thread_pool_->SetPthreadPriority(options_->GetThreadPoolPthreadPriority());
1205 Start();
1206
1207 Runtime* runtime = Runtime::Current();
1208 if (runtime->IsZygote()) {
1209 // To speed up class lookups, generate a type lookup table for
1210 // dex files not backed by oat file.
1211 for (const DexFile* dex_file : runtime->GetClassLinker()->GetBootClassPath()) {
1212 if (dex_file->GetOatDexFile() == nullptr) {
1213 TypeLookupTable type_lookup_table = TypeLookupTable::Create(*dex_file);
1214 type_lookup_tables_.push_back(
1215 std::make_unique<art::OatDexFile>(std::move(type_lookup_table)));
1216 dex_file->SetOatDexFile(type_lookup_tables_.back().get());
1217 }
1218 }
1219
1220 // Add a task that will verify boot classpath jars that were not
1221 // pre-compiled.
1222 thread_pool_->AddTask(Thread::Current(), new ZygoteVerificationTask());
1223 }
1224
1225 if (runtime->IsZygote() && HasImageWithProfile() && UseJitCompilation()) {
1226 // If we have an image with a profile, request a JIT task to
1227 // compile all methods in that profile.
1228 thread_pool_->AddTask(Thread::Current(), new ZygoteTask());
1229
1230 // And create mappings to share boot image methods memory from the zygote to
1231 // child processes.
1232
1233 // Compute the total capacity required for the boot image methods.
1234 uint64_t total_capacity = 0;
1235 for (gc::space::ImageSpace* space : Runtime::Current()->GetHeap()->GetBootImageSpaces()) {
1236 const ImageHeader& header = space->GetImageHeader();
1237 const ImageSection& section = header.GetMethodsSection();
1238 // Mappings need to be at the page level.
1239 uint8_t* page_start = AlignUp(header.GetImageBegin() + section.Offset(), kPageSize);
1240 uint8_t* page_end =
1241 AlignDown(header.GetImageBegin() + section.Offset() + section.Size(), kPageSize);
1242 if (page_end > page_start) {
1243 total_capacity += (page_end - page_start);
1244 }
1245 }
1246
1247 // Create the child and zygote mappings to the boot image methods.
1248 if (total_capacity > 0) {
1249 // Start with '/boot' and end with '.art' to match the pattern recognized
1250 // by android_os_Debug.cpp for boot images.
1251 const char* name = "/boot-image-methods.art";
1252 unique_fd mem_fd = unique_fd(art::memfd_create(name, /* flags= */ MFD_ALLOW_SEALING));
1253 if (mem_fd.get() == -1) {
1254 PLOG(WARNING) << "Could not create boot image methods file descriptor";
1255 return;
1256 }
1257 if (ftruncate(mem_fd.get(), total_capacity) != 0) {
1258 PLOG(WARNING) << "Failed to truncate boot image methods file to " << total_capacity;
1259 return;
1260 }
1261 std::string error_str;
1262
1263 // Create the shared mapping eagerly, as this prevents other processes
1264 // from adding the writable seal.
1265 zygote_mapping_methods_ = MemMap::MapFile(
1266 total_capacity,
1267 PROT_READ | PROT_WRITE,
1268 MAP_SHARED,
1269 mem_fd,
1270 /* start= */ 0,
1271 /* low_4gb= */ false,
1272 "boot-image-methods",
1273 &error_str);
1274
1275 if (!zygote_mapping_methods_.IsValid()) {
1276 LOG(WARNING) << "Failed to create zygote mapping of boot image methods: " << error_str;
1277 return;
1278 }
1279 if (zygote_mapping_methods_.MadviseDontFork() != 0) {
1280 LOG(WARNING) << "Failed to madvise dont fork boot image methods";
1281 zygote_mapping_methods_ = MemMap();
1282 return;
1283 }
1284
1285 // We should use the F_SEAL_FUTURE_WRITE flag, but this has unexpected
1286 // behavior on private mappings after fork (the mapping becomes shared between
1287 // parent and children), see b/143833776.
1288 // We will seal the write once we are done writing to the shared mapping.
1289 if (fcntl(mem_fd, F_ADD_SEALS, F_SEAL_SHRINK | F_SEAL_GROW) == -1) {
1290 PLOG(WARNING) << "Failed to seal boot image methods file descriptor";
1291 zygote_mapping_methods_ = MemMap();
1292 return;
1293 }
1294 fd_methods_ = unique_fd(mem_fd.release());
1295 fd_methods_size_ = total_capacity;
1296 }
1297 }
1298 }
1299
RegisterDexFiles(const std::vector<std::unique_ptr<const DexFile>> & dex_files,jobject class_loader)1300 void Jit::RegisterDexFiles(const std::vector<std::unique_ptr<const DexFile>>& dex_files,
1301 jobject class_loader) {
1302 if (dex_files.empty()) {
1303 return;
1304 }
1305 Runtime* runtime = Runtime::Current();
1306 // If the runtime is debuggable, no need to precompile methods.
1307 if (runtime->IsSystemServer() &&
1308 UseJitCompilation() && HasImageWithProfile() &&
1309 !runtime->IsJavaDebuggable()) {
1310 thread_pool_->AddTask(Thread::Current(), new JitProfileTask(dex_files, class_loader));
1311 }
1312 }
1313
CompileMethodFromProfile(Thread * self,ClassLinker * class_linker,uint32_t method_idx,Handle<mirror::DexCache> dex_cache,Handle<mirror::ClassLoader> class_loader,bool add_to_queue,bool compile_after_boot)1314 bool Jit::CompileMethodFromProfile(Thread* self,
1315 ClassLinker* class_linker,
1316 uint32_t method_idx,
1317 Handle<mirror::DexCache> dex_cache,
1318 Handle<mirror::ClassLoader> class_loader,
1319 bool add_to_queue,
1320 bool compile_after_boot) {
1321 ArtMethod* method = class_linker->ResolveMethodWithoutInvokeType(
1322 method_idx, dex_cache, class_loader);
1323 if (method == nullptr) {
1324 self->ClearException();
1325 return false;
1326 }
1327 if (!method->IsCompilable() || !method->IsInvokable()) {
1328 return false;
1329 }
1330 if (method->IsPreCompiled()) {
1331 // Already seen by another profile.
1332 return false;
1333 }
1334 const void* entry_point = method->GetEntryPointFromQuickCompiledCode();
1335 if (class_linker->IsQuickToInterpreterBridge(entry_point) ||
1336 class_linker->IsQuickGenericJniStub(entry_point) ||
1337 // We explicitly check for the stub. The trampoline is for methods backed by
1338 // a .oat file that has a compiled version of the method.
1339 (entry_point == GetQuickResolutionStub())) {
1340 method->SetPreCompiled();
1341 if (!add_to_queue) {
1342 CompileMethod(method, self, /* baseline= */ false, /* osr= */ false, /* prejit= */ true);
1343 } else {
1344 Task* task = new JitCompileTask(method, JitCompileTask::TaskKind::kPreCompile);
1345 if (compile_after_boot) {
1346 MutexLock mu(Thread::Current(), boot_completed_lock_);
1347 if (!boot_completed_) {
1348 tasks_after_boot_.push_back(task);
1349 return true;
1350 }
1351 DCHECK(tasks_after_boot_.empty());
1352 }
1353 thread_pool_->AddTask(self, task);
1354 return true;
1355 }
1356 }
1357 return false;
1358 }
1359
CompileMethodsFromBootProfile(Thread * self,const std::vector<const DexFile * > & dex_files,const std::string & profile_file,Handle<mirror::ClassLoader> class_loader,bool add_to_queue)1360 uint32_t Jit::CompileMethodsFromBootProfile(
1361 Thread* self,
1362 const std::vector<const DexFile*>& dex_files,
1363 const std::string& profile_file,
1364 Handle<mirror::ClassLoader> class_loader,
1365 bool add_to_queue) {
1366 unix_file::FdFile profile(profile_file.c_str(), O_RDONLY, true);
1367
1368 if (profile.Fd() == -1) {
1369 PLOG(WARNING) << "No boot profile: " << profile_file;
1370 return 0u;
1371 }
1372
1373 ProfileBootInfo profile_info;
1374 if (!profile_info.Load(profile.Fd(), dex_files)) {
1375 LOG(ERROR) << "Could not load profile file: " << profile_file;
1376 return 0u;
1377 }
1378
1379 ScopedObjectAccess soa(self);
1380 VariableSizedHandleScope handles(self);
1381 std::vector<Handle<mirror::DexCache>> dex_caches;
1382 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1383 for (const DexFile* dex_file : profile_info.GetDexFiles()) {
1384 dex_caches.push_back(handles.NewHandle(class_linker->FindDexCache(self, *dex_file)));
1385 }
1386
1387 uint32_t added_to_queue = 0;
1388 for (const std::pair<uint32_t, uint32_t>& pair : profile_info.GetMethods()) {
1389 if (CompileMethodFromProfile(self,
1390 class_linker,
1391 pair.second,
1392 dex_caches[pair.first],
1393 class_loader,
1394 add_to_queue,
1395 /*compile_after_boot=*/false)) {
1396 ++added_to_queue;
1397 }
1398 }
1399 return added_to_queue;
1400 }
1401
CompileMethodsFromProfile(Thread * self,const std::vector<const DexFile * > & dex_files,const std::string & profile_file,Handle<mirror::ClassLoader> class_loader,bool add_to_queue)1402 uint32_t Jit::CompileMethodsFromProfile(
1403 Thread* self,
1404 const std::vector<const DexFile*>& dex_files,
1405 const std::string& profile_file,
1406 Handle<mirror::ClassLoader> class_loader,
1407 bool add_to_queue) {
1408
1409 if (profile_file.empty()) {
1410 LOG(WARNING) << "Expected a profile file in JIT zygote mode";
1411 return 0u;
1412 }
1413
1414 // We don't generate boot profiles on device, therefore we don't
1415 // need to lock the file.
1416 unix_file::FdFile profile(profile_file.c_str(), O_RDONLY, true);
1417
1418 if (profile.Fd() == -1) {
1419 PLOG(WARNING) << "No profile: " << profile_file;
1420 return 0u;
1421 }
1422
1423 ProfileCompilationInfo profile_info;
1424 if (!profile_info.Load(profile.Fd())) {
1425 LOG(ERROR) << "Could not load profile file";
1426 return 0u;
1427 }
1428 ScopedObjectAccess soa(self);
1429 StackHandleScope<1> hs(self);
1430 MutableHandle<mirror::DexCache> dex_cache = hs.NewHandle<mirror::DexCache>(nullptr);
1431 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1432 uint32_t added_to_queue = 0u;
1433 for (const DexFile* dex_file : dex_files) {
1434 if (LocationIsOnArtModule(dex_file->GetLocation().c_str())) {
1435 // The ART module jars are already preopted.
1436 continue;
1437 }
1438
1439 std::set<dex::TypeIndex> class_types;
1440 std::set<uint16_t> all_methods;
1441 if (!profile_info.GetClassesAndMethods(*dex_file,
1442 &class_types,
1443 &all_methods,
1444 &all_methods,
1445 &all_methods)) {
1446 // This means the profile file did not reference the dex file, which is the case
1447 // if there's no classes and methods of that dex file in the profile.
1448 continue;
1449 }
1450 dex_cache.Assign(class_linker->FindDexCache(self, *dex_file));
1451 CHECK(dex_cache != nullptr) << "Could not find dex cache for " << dex_file->GetLocation();
1452
1453 for (uint16_t method_idx : all_methods) {
1454 if (CompileMethodFromProfile(self,
1455 class_linker,
1456 method_idx,
1457 dex_cache,
1458 class_loader,
1459 add_to_queue,
1460 /*compile_after_boot=*/true)) {
1461 ++added_to_queue;
1462 }
1463 }
1464 }
1465
1466 // Add a task to run when all compilation is done.
1467 JitDoneCompilingProfileTask* task = new JitDoneCompilingProfileTask(dex_files);
1468 MutexLock mu(Thread::Current(), boot_completed_lock_);
1469 if (!boot_completed_) {
1470 tasks_after_boot_.push_back(task);
1471 } else {
1472 DCHECK(tasks_after_boot_.empty());
1473 thread_pool_->AddTask(self, task);
1474 }
1475 return added_to_queue;
1476 }
1477
IgnoreSamplesForMethod(ArtMethod * method)1478 static bool IgnoreSamplesForMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
1479 if (method->IsClassInitializer() || !method->IsCompilable() || method->IsPreCompiled()) {
1480 // We do not want to compile such methods.
1481 return true;
1482 }
1483 if (method->IsNative()) {
1484 ObjPtr<mirror::Class> klass = method->GetDeclaringClass();
1485 if (klass == GetClassRoot<mirror::MethodHandle>() ||
1486 klass == GetClassRoot<mirror::VarHandle>()) {
1487 // MethodHandle and VarHandle invocation methods are required to throw an
1488 // UnsupportedOperationException if invoked reflectively. We achieve this by having native
1489 // implementations that raise the exception. We need to disable JIT compilation of these JNI
1490 // methods as it can lead to transitioning between JIT compiled JNI stubs and generic JNI
1491 // stubs. Since these stubs have different stack representations we can then crash in stack
1492 // walking (b/78151261).
1493 return true;
1494 }
1495 }
1496 return false;
1497 }
1498
MaybeCompileMethod(Thread * self,ArtMethod * method,uint32_t old_count,uint32_t new_count,bool with_backedges)1499 bool Jit::MaybeCompileMethod(Thread* self,
1500 ArtMethod* method,
1501 uint32_t old_count,
1502 uint32_t new_count,
1503 bool with_backedges) {
1504 if (thread_pool_ == nullptr) {
1505 return false;
1506 }
1507 if (UNLIKELY(method->IsPreCompiled()) && !with_backedges /* don't check for OSR */) {
1508 if (!NeedsClinitCheckBeforeCall(method) ||
1509 method->GetDeclaringClass()->IsVisiblyInitialized()) {
1510 const void* entry_point = code_cache_->GetSavedEntryPointOfPreCompiledMethod(method);
1511 if (entry_point != nullptr) {
1512 Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(method, entry_point);
1513 return true;
1514 }
1515 }
1516 }
1517
1518 if (IgnoreSamplesForMethod(method)) {
1519 return false;
1520 }
1521 if (HotMethodThreshold() == 0) {
1522 // Tests might request JIT on first use (compiled synchronously in the interpreter).
1523 return false;
1524 }
1525 DCHECK_GT(WarmMethodThreshold(), 0);
1526 DCHECK_GT(HotMethodThreshold(), WarmMethodThreshold());
1527 DCHECK_GT(OSRMethodThreshold(), HotMethodThreshold());
1528 DCHECK_GE(PriorityThreadWeight(), 1);
1529 DCHECK_LE(PriorityThreadWeight(), HotMethodThreshold());
1530
1531 if (old_count < WarmMethodThreshold() && new_count >= WarmMethodThreshold()) {
1532 // Note: Native method have no "warm" state or profiling info.
1533 if (!method->IsNative() &&
1534 (method->GetProfilingInfo(kRuntimePointerSize) == nullptr) &&
1535 code_cache_->CanAllocateProfilingInfo() &&
1536 !options_->UseTieredJitCompilation()) {
1537 bool success = ProfilingInfo::Create(self, method, /* retry_allocation= */ false);
1538 if (success) {
1539 VLOG(jit) << "Start profiling " << method->PrettyMethod();
1540 }
1541
1542 if (thread_pool_ == nullptr) {
1543 // Calling ProfilingInfo::Create might put us in a suspended state, which could
1544 // lead to the thread pool being deleted when we are shutting down.
1545 return false;
1546 }
1547
1548 if (!success) {
1549 // We failed allocating. Instead of doing the collection on the Java thread, we push
1550 // an allocation to a compiler thread, that will do the collection.
1551 thread_pool_->AddTask(
1552 self, new JitCompileTask(method, JitCompileTask::TaskKind::kAllocateProfile));
1553 }
1554 }
1555 }
1556 if (UseJitCompilation()) {
1557 if (old_count < HotMethodThreshold() && new_count >= HotMethodThreshold()) {
1558 if (!code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
1559 DCHECK(thread_pool_ != nullptr);
1560 JitCompileTask::TaskKind kind =
1561 (options_->UseTieredJitCompilation() || options_->UseBaselineCompiler())
1562 ? JitCompileTask::TaskKind::kCompileBaseline
1563 : JitCompileTask::TaskKind::kCompile;
1564 thread_pool_->AddTask(self, new JitCompileTask(method, kind));
1565 }
1566 }
1567 if (old_count < OSRMethodThreshold() && new_count >= OSRMethodThreshold()) {
1568 if (!with_backedges) {
1569 return false;
1570 }
1571 DCHECK(!method->IsNative()); // No back edges reported for native methods.
1572 if (!code_cache_->IsOsrCompiled(method)) {
1573 DCHECK(thread_pool_ != nullptr);
1574 thread_pool_->AddTask(
1575 self, new JitCompileTask(method, JitCompileTask::TaskKind::kCompileOsr));
1576 }
1577 }
1578 }
1579 return true;
1580 }
1581
EnqueueOptimizedCompilation(ArtMethod * method,Thread * self)1582 void Jit::EnqueueOptimizedCompilation(ArtMethod* method, Thread* self) {
1583 if (thread_pool_ == nullptr) {
1584 return;
1585 }
1586 // We arrive here after a baseline compiled code has reached its baseline
1587 // hotness threshold. If tiered compilation is enabled, enqueue a compilation
1588 // task that will compile optimize the method.
1589 if (options_->UseTieredJitCompilation()) {
1590 thread_pool_->AddTask(
1591 self, new JitCompileTask(method, JitCompileTask::TaskKind::kCompile));
1592 }
1593 }
1594
1595 class ScopedSetRuntimeThread {
1596 public:
ScopedSetRuntimeThread(Thread * self)1597 explicit ScopedSetRuntimeThread(Thread* self)
1598 : self_(self), was_runtime_thread_(self_->IsRuntimeThread()) {
1599 self_->SetIsRuntimeThread(true);
1600 }
1601
~ScopedSetRuntimeThread()1602 ~ScopedSetRuntimeThread() {
1603 self_->SetIsRuntimeThread(was_runtime_thread_);
1604 }
1605
1606 private:
1607 Thread* self_;
1608 bool was_runtime_thread_;
1609 };
1610
MethodEntered(Thread * thread,ArtMethod * method)1611 void Jit::MethodEntered(Thread* thread, ArtMethod* method) {
1612 Runtime* runtime = Runtime::Current();
1613 if (UNLIKELY(runtime->UseJitCompilation() && JitAtFirstUse())) {
1614 ArtMethod* np_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1615 if (np_method->IsCompilable()) {
1616 if (!np_method->IsNative() && GetCodeCache()->CanAllocateProfilingInfo()) {
1617 // The compiler requires a ProfilingInfo object for non-native methods.
1618 ProfilingInfo::Create(thread, np_method, /* retry_allocation= */ true);
1619 }
1620 // TODO(ngeoffray): For JIT at first use, use kPreCompile. Currently we don't due to
1621 // conflicts with jitzygote optimizations.
1622 JitCompileTask compile_task(method, JitCompileTask::TaskKind::kCompile);
1623 // Fake being in a runtime thread so that class-load behavior will be the same as normal jit.
1624 ScopedSetRuntimeThread ssrt(thread);
1625 compile_task.Run(thread);
1626 }
1627 return;
1628 }
1629
1630 ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize);
1631 // Update the entrypoint if the ProfilingInfo has one. The interpreter will call it
1632 // instead of interpreting the method. We don't update it for instrumentation as the entrypoint
1633 // must remain the instrumentation entrypoint.
1634 if ((profiling_info != nullptr) &&
1635 (profiling_info->GetSavedEntryPoint() != nullptr) &&
1636 (method->GetEntryPointFromQuickCompiledCode() != GetQuickInstrumentationEntryPoint())) {
1637 Runtime::Current()->GetInstrumentation()->UpdateMethodsCode(
1638 method, profiling_info->GetSavedEntryPoint());
1639 } else {
1640 AddSamples(thread, method, 1, /* with_backedges= */false);
1641 }
1642 }
1643
InvokeVirtualOrInterface(ObjPtr<mirror::Object> this_object,ArtMethod * caller,uint32_t dex_pc,ArtMethod * callee ATTRIBUTE_UNUSED)1644 void Jit::InvokeVirtualOrInterface(ObjPtr<mirror::Object> this_object,
1645 ArtMethod* caller,
1646 uint32_t dex_pc,
1647 ArtMethod* callee ATTRIBUTE_UNUSED) {
1648 ScopedAssertNoThreadSuspension ants(__FUNCTION__);
1649 DCHECK(this_object != nullptr);
1650 ProfilingInfo* info = caller->GetProfilingInfo(kRuntimePointerSize);
1651 if (info != nullptr) {
1652 info->AddInvokeInfo(dex_pc, this_object->GetClass());
1653 }
1654 }
1655
WaitForCompilationToFinish(Thread * self)1656 void Jit::WaitForCompilationToFinish(Thread* self) {
1657 if (thread_pool_ != nullptr) {
1658 thread_pool_->Wait(self, false, false);
1659 }
1660 }
1661
Stop()1662 void Jit::Stop() {
1663 Thread* self = Thread::Current();
1664 // TODO(ngeoffray): change API to not require calling WaitForCompilationToFinish twice.
1665 WaitForCompilationToFinish(self);
1666 GetThreadPool()->StopWorkers(self);
1667 WaitForCompilationToFinish(self);
1668 }
1669
Start()1670 void Jit::Start() {
1671 GetThreadPool()->StartWorkers(Thread::Current());
1672 }
1673
ScopedJitSuspend()1674 ScopedJitSuspend::ScopedJitSuspend() {
1675 jit::Jit* jit = Runtime::Current()->GetJit();
1676 was_on_ = (jit != nullptr) && (jit->GetThreadPool() != nullptr);
1677 if (was_on_) {
1678 jit->Stop();
1679 }
1680 }
1681
~ScopedJitSuspend()1682 ScopedJitSuspend::~ScopedJitSuspend() {
1683 if (was_on_) {
1684 DCHECK(Runtime::Current()->GetJit() != nullptr);
1685 DCHECK(Runtime::Current()->GetJit()->GetThreadPool() != nullptr);
1686 Runtime::Current()->GetJit()->Start();
1687 }
1688 }
1689
RunPollingThread(void * arg)1690 static void* RunPollingThread(void* arg) {
1691 Jit* jit = reinterpret_cast<Jit*>(arg);
1692 do {
1693 sleep(10);
1694 } while (!jit->GetCodeCache()->GetZygoteMap()->IsCompilationNotified());
1695
1696 // We will suspend other threads: we can only do that if we're attached to the
1697 // runtime.
1698 Runtime* runtime = Runtime::Current();
1699 bool thread_attached = runtime->AttachCurrentThread(
1700 "BootImagePollingThread",
1701 /* as_daemon= */ true,
1702 /* thread_group= */ nullptr,
1703 /* create_peer= */ false);
1704 CHECK(thread_attached);
1705
1706 {
1707 // Prevent other threads from running while we are remapping the boot image
1708 // ArtMethod's. Native threads might still be running, but they cannot
1709 // change the contents of ArtMethod's.
1710 ScopedSuspendAll ssa(__FUNCTION__);
1711 runtime->GetJit()->MapBootImageMethods();
1712 }
1713
1714 Runtime::Current()->DetachCurrentThread();
1715 return nullptr;
1716 }
1717
PostForkChildAction(bool is_system_server,bool is_zygote)1718 void Jit::PostForkChildAction(bool is_system_server, bool is_zygote) {
1719 // Clear the potential boot tasks inherited from the zygote.
1720 {
1721 MutexLock mu(Thread::Current(), boot_completed_lock_);
1722 tasks_after_boot_.clear();
1723 }
1724
1725 Runtime* const runtime = Runtime::Current();
1726 // Check if we'll need to remap the boot image methods.
1727 if (!is_zygote && fd_methods_ != -1) {
1728 // Create a thread that will poll the status of zygote compilation, and map
1729 // the private mapping of boot image methods.
1730 // For child zygote, we instead query IsCompilationNotified() post zygote fork.
1731 zygote_mapping_methods_.ResetInForkedProcess();
1732 pthread_t polling_thread;
1733 pthread_attr_t attr;
1734 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
1735 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
1736 "PTHREAD_CREATE_DETACHED");
1737 CHECK_PTHREAD_CALL(
1738 pthread_create,
1739 (&polling_thread, &attr, RunPollingThread, reinterpret_cast<void*>(this)),
1740 "Methods maps thread");
1741 }
1742
1743 if (is_zygote || runtime->IsSafeMode()) {
1744 // Delete the thread pool, we are not going to JIT.
1745 thread_pool_.reset(nullptr);
1746 return;
1747 }
1748 // At this point, the compiler options have been adjusted to the particular configuration
1749 // of the forked child. Parse them again.
1750 jit_compiler_->ParseCompilerOptions();
1751
1752 // Adjust the status of code cache collection: the status from zygote was to not collect.
1753 code_cache_->SetGarbageCollectCode(!jit_compiler_->GenerateDebugInfo() &&
1754 !Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled());
1755
1756 if (is_system_server && HasImageWithProfile()) {
1757 // Disable garbage collection: we don't want it to delete methods we're compiling
1758 // through boot and system server profiles.
1759 // TODO(ngeoffray): Fix this so we still collect deoptimized and unused code.
1760 code_cache_->SetGarbageCollectCode(false);
1761 }
1762
1763 // We do this here instead of PostZygoteFork, as NativeDebugInfoPostFork only
1764 // applies to a child.
1765 NativeDebugInfoPostFork();
1766 }
1767
PreZygoteFork()1768 void Jit::PreZygoteFork() {
1769 if (thread_pool_ == nullptr) {
1770 return;
1771 }
1772 thread_pool_->DeleteThreads();
1773
1774 NativeDebugInfoPreFork();
1775 }
1776
PostZygoteFork()1777 void Jit::PostZygoteFork() {
1778 if (thread_pool_ == nullptr) {
1779 // If this is a child zygote, check if we need to remap the boot image
1780 // methods.
1781 if (Runtime::Current()->IsZygote() &&
1782 fd_methods_ != -1 &&
1783 code_cache_->GetZygoteMap()->IsCompilationNotified()) {
1784 ScopedSuspendAll ssa(__FUNCTION__);
1785 MapBootImageMethods();
1786 }
1787 return;
1788 }
1789 if (Runtime::Current()->IsZygote() &&
1790 code_cache_->GetZygoteMap()->IsCompilationDoneButNotNotified()) {
1791 // Copy the boot image methods data to the mappings we created to share
1792 // with the children. We do this here as we are the only thread running and
1793 // we don't risk other threads concurrently updating the ArtMethod's.
1794 CHECK_EQ(GetTaskCount(), 1);
1795 NotifyZygoteCompilationDone();
1796 CHECK(code_cache_->GetZygoteMap()->IsCompilationNotified());
1797 }
1798 thread_pool_->CreateThreads();
1799 }
1800
BootCompleted()1801 void Jit::BootCompleted() {
1802 Thread* self = Thread::Current();
1803 std::deque<Task*> tasks;
1804 {
1805 MutexLock mu(self, boot_completed_lock_);
1806 tasks = std::move(tasks_after_boot_);
1807 boot_completed_ = true;
1808 }
1809 for (Task* task : tasks) {
1810 thread_pool_->AddTask(self, task);
1811 }
1812 }
1813
CanEncodeMethod(ArtMethod * method,bool is_for_shared_region) const1814 bool Jit::CanEncodeMethod(ArtMethod* method, bool is_for_shared_region) const {
1815 return !is_for_shared_region ||
1816 Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(method->GetDeclaringClass());
1817 }
1818
CanEncodeClass(ObjPtr<mirror::Class> cls,bool is_for_shared_region) const1819 bool Jit::CanEncodeClass(ObjPtr<mirror::Class> cls, bool is_for_shared_region) const {
1820 return !is_for_shared_region || Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(cls);
1821 }
1822
CanEncodeString(ObjPtr<mirror::String> string,bool is_for_shared_region) const1823 bool Jit::CanEncodeString(ObjPtr<mirror::String> string, bool is_for_shared_region) const {
1824 return !is_for_shared_region || Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(string);
1825 }
1826
CanAssumeInitialized(ObjPtr<mirror::Class> cls,bool is_for_shared_region) const1827 bool Jit::CanAssumeInitialized(ObjPtr<mirror::Class> cls, bool is_for_shared_region) const {
1828 if (!is_for_shared_region) {
1829 return cls->IsInitialized();
1830 } else {
1831 // Look up the class status in the oat file.
1832 const DexFile& dex_file = *cls->GetDexCache()->GetDexFile();
1833 const OatDexFile* oat_dex_file = dex_file.GetOatDexFile();
1834 // In case we run without an image there won't be a backing oat file.
1835 if (oat_dex_file == nullptr || oat_dex_file->GetOatFile() == nullptr) {
1836 return false;
1837 }
1838 uint16_t class_def_index = cls->GetDexClassDefIndex();
1839 return oat_dex_file->GetOatClass(class_def_index).GetStatus() >= ClassStatus::kInitialized;
1840 }
1841 }
1842
EnqueueCompilationFromNterp(ArtMethod * method,Thread * self)1843 void Jit::EnqueueCompilationFromNterp(ArtMethod* method, Thread* self) {
1844 if (thread_pool_ == nullptr) {
1845 return;
1846 }
1847 if (GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) {
1848 // If we already have compiled code for it, nterp may be stuck in a loop.
1849 // Compile OSR.
1850 thread_pool_->AddTask(
1851 self, new JitCompileTask(method, JitCompileTask::TaskKind::kCompileOsr));
1852 return;
1853 }
1854 if (GetCodeCache()->CanAllocateProfilingInfo()) {
1855 ProfilingInfo::Create(self, method, /* retry_allocation= */ false);
1856 thread_pool_->AddTask(
1857 self, new JitCompileTask(method, JitCompileTask::TaskKind::kCompileBaseline));
1858 } else {
1859 thread_pool_->AddTask(
1860 self, new JitCompileTask(method, JitCompileTask::TaskKind::kCompile));
1861 }
1862 }
1863
1864 } // namespace jit
1865 } // namespace art
1866