1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <auth_mod.h>
11 #include <bl1.h>
12 #include <bl_common.h>
13 #include <console.h>
14 #include <debug.h>
15 #include <errata_report.h>
16 #include <platform.h>
17 #include <platform_def.h>
18 #include <smcc_helpers.h>
19 #include <utils.h>
20 #include <uuid.h>
21 #include "bl1_private.h"
22 
23 /* BL1 Service UUID */
24 DEFINE_SVC_UUID(bl1_svc_uid,
25 	0xfd3967d4, 0x72cb, 0x4d9a, 0xb5, 0x75,
26 	0x67, 0x15, 0xd6, 0xf4, 0xbb, 0x4a);
27 
28 
29 static void bl1_load_bl2(void);
30 
31 /*******************************************************************************
32  * The next function has a weak definition. Platform specific code can override
33  * it if it wishes to.
34  ******************************************************************************/
35 #pragma weak bl1_init_bl2_mem_layout
36 
37 /*******************************************************************************
38  * Function that takes a memory layout into which BL2 has been loaded and
39  * populates a new memory layout for BL2 that ensures that BL1's data sections
40  * resident in secure RAM are not visible to BL2.
41  ******************************************************************************/
bl1_init_bl2_mem_layout(const meminfo_t * bl1_mem_layout,meminfo_t * bl2_mem_layout)42 void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout,
43 			     meminfo_t *bl2_mem_layout)
44 {
45 
46 	assert(bl1_mem_layout != NULL);
47 	assert(bl2_mem_layout != NULL);
48 
49 #if LOAD_IMAGE_V2
50 	/*
51 	 * Remove BL1 RW data from the scope of memory visible to BL2.
52 	 * This is assuming BL1 RW data is at the top of bl1_mem_layout.
53 	 */
54 	assert(BL1_RW_BASE > bl1_mem_layout->total_base);
55 	bl2_mem_layout->total_base = bl1_mem_layout->total_base;
56 	bl2_mem_layout->total_size = BL1_RW_BASE - bl1_mem_layout->total_base;
57 #else
58 	/* Check that BL1's memory is lying outside of the free memory */
59 	assert((BL1_RAM_LIMIT <= bl1_mem_layout->free_base) ||
60 	       (BL1_RAM_BASE >= bl1_mem_layout->free_base +
61 				bl1_mem_layout->free_size));
62 
63 	/* Remove BL1 RW data from the scope of memory visible to BL2 */
64 	*bl2_mem_layout = *bl1_mem_layout;
65 	reserve_mem(&bl2_mem_layout->total_base,
66 		    &bl2_mem_layout->total_size,
67 		    BL1_RAM_BASE,
68 		    BL1_RAM_LIMIT - BL1_RAM_BASE);
69 #endif /* LOAD_IMAGE_V2 */
70 
71 	flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t));
72 }
73 
74 /*******************************************************************************
75  * Function to perform late architectural and platform specific initialization.
76  * It also queries the platform to load and run next BL image. Only called
77  * by the primary cpu after a cold boot.
78  ******************************************************************************/
bl1_main(void)79 void bl1_main(void)
80 {
81 	unsigned int image_id;
82 
83 	/* Announce our arrival */
84 	NOTICE(FIRMWARE_WELCOME_STR);
85 	NOTICE("BL1: %s\n", version_string);
86 	NOTICE("BL1: %s\n", build_message);
87 
88 	INFO("BL1: RAM %p - %p\n", (void *)BL1_RAM_BASE,
89 					(void *)BL1_RAM_LIMIT);
90 
91 	print_errata_status();
92 
93 #if ENABLE_ASSERTIONS
94 	u_register_t val;
95 	/*
96 	 * Ensure that MMU/Caches and coherency are turned on
97 	 */
98 #ifdef AARCH32
99 	val = read_sctlr();
100 #else
101 	val = read_sctlr_el3();
102 #endif
103 	assert(val & SCTLR_M_BIT);
104 	assert(val & SCTLR_C_BIT);
105 	assert(val & SCTLR_I_BIT);
106 	/*
107 	 * Check that Cache Writeback Granule (CWG) in CTR_EL0 matches the
108 	 * provided platform value
109 	 */
110 	val = (read_ctr_el0() >> CTR_CWG_SHIFT) & CTR_CWG_MASK;
111 	/*
112 	 * If CWG is zero, then no CWG information is available but we can
113 	 * at least check the platform value is less than the architectural
114 	 * maximum.
115 	 */
116 	if (val != 0)
117 		assert(CACHE_WRITEBACK_GRANULE == SIZE_FROM_LOG2_WORDS(val));
118 	else
119 		assert(CACHE_WRITEBACK_GRANULE <= MAX_CACHE_LINE_SIZE);
120 #endif /* ENABLE_ASSERTIONS */
121 
122 	/* Perform remaining generic architectural setup from EL3 */
123 	bl1_arch_setup();
124 
125 #if TRUSTED_BOARD_BOOT
126 	/* Initialize authentication module */
127 	auth_mod_init();
128 #endif /* TRUSTED_BOARD_BOOT */
129 
130 	/* Perform platform setup in BL1. */
131 	bl1_platform_setup();
132 
133 	/* Get the image id of next image to load and run. */
134 	image_id = bl1_plat_get_next_image_id();
135 
136 	/*
137 	 * We currently interpret any image id other than
138 	 * BL2_IMAGE_ID as the start of firmware update.
139 	 */
140 	if (image_id == BL2_IMAGE_ID)
141 		bl1_load_bl2();
142 	else
143 		NOTICE("BL1-FWU: *******FWU Process Started*******\n");
144 
145 	bl1_prepare_next_image(image_id);
146 
147 	console_flush();
148 }
149 
150 /*******************************************************************************
151  * This function locates and loads the BL2 raw binary image in the trusted SRAM.
152  * Called by the primary cpu after a cold boot.
153  * TODO: Add support for alternative image load mechanism e.g using virtio/elf
154  * loader etc.
155  ******************************************************************************/
bl1_load_bl2(void)156 void bl1_load_bl2(void)
157 {
158 	image_desc_t *image_desc;
159 	image_info_t *image_info;
160 	entry_point_info_t *ep_info;
161 	meminfo_t *bl1_tzram_layout;
162 	meminfo_t *bl2_tzram_layout;
163 	int err;
164 
165 	/* Get the image descriptor */
166 	image_desc = bl1_plat_get_image_desc(BL2_IMAGE_ID);
167 	assert(image_desc);
168 
169 	/* Get the image info */
170 	image_info = &image_desc->image_info;
171 
172 	/* Get the entry point info */
173 	ep_info = &image_desc->ep_info;
174 
175 	/* Find out how much free trusted ram remains after BL1 load */
176 	bl1_tzram_layout = bl1_plat_sec_mem_layout();
177 
178 	INFO("BL1: Loading BL2\n");
179 
180 #if LOAD_IMAGE_V2
181 	err = load_auth_image(BL2_IMAGE_ID, image_info);
182 #else
183 	/* Load the BL2 image */
184 	err = load_auth_image(bl1_tzram_layout,
185 			 BL2_IMAGE_ID,
186 			 image_info->image_base,
187 			 image_info,
188 			 ep_info);
189 
190 #endif /* LOAD_IMAGE_V2 */
191 
192 	if (err) {
193 		ERROR("Failed to load BL2 firmware.\n");
194 		plat_error_handler(err);
195 	}
196 
197 	/*
198 	 * Create a new layout of memory for BL2 as seen by BL1 i.e.
199 	 * tell it the amount of total and free memory available.
200 	 * This layout is created at the first free address visible
201 	 * to BL2. BL2 will read the memory layout before using its
202 	 * memory for other purposes.
203 	 */
204 #if LOAD_IMAGE_V2
205 	bl2_tzram_layout = (meminfo_t *) bl1_tzram_layout->total_base;
206 #else
207 	bl2_tzram_layout = (meminfo_t *) bl1_tzram_layout->free_base;
208 #endif /* LOAD_IMAGE_V2 */
209 
210 	bl1_init_bl2_mem_layout(bl1_tzram_layout, bl2_tzram_layout);
211 
212 	ep_info->args.arg1 = (uintptr_t)bl2_tzram_layout;
213 	NOTICE("BL1: Booting BL2\n");
214 	VERBOSE("BL1: BL2 memory layout address = %p\n",
215 		(void *) bl2_tzram_layout);
216 }
217 
218 /*******************************************************************************
219  * Function called just before handing over to the next BL to inform the user
220  * about the boot progress. In debug mode, also print details about the BL
221  * image's execution context.
222  ******************************************************************************/
bl1_print_next_bl_ep_info(const entry_point_info_t * bl_ep_info)223 void bl1_print_next_bl_ep_info(const entry_point_info_t *bl_ep_info)
224 {
225 #ifdef AARCH32
226 	NOTICE("BL1: Booting BL32\n");
227 #else
228 	NOTICE("BL1: Booting BL31\n");
229 #endif /* AARCH32 */
230 	print_entry_point_info(bl_ep_info);
231 }
232 
233 #if SPIN_ON_BL1_EXIT
print_debug_loop_message(void)234 void print_debug_loop_message(void)
235 {
236 	NOTICE("BL1: Debug loop, spinning forever\n");
237 	NOTICE("BL1: Please connect the debugger to continue\n");
238 }
239 #endif
240 
241 /*******************************************************************************
242  * Top level handler for servicing BL1 SMCs.
243  ******************************************************************************/
bl1_smc_handler(unsigned int smc_fid,register_t x1,register_t x2,register_t x3,register_t x4,void * cookie,void * handle,unsigned int flags)244 register_t bl1_smc_handler(unsigned int smc_fid,
245 	register_t x1,
246 	register_t x2,
247 	register_t x3,
248 	register_t x4,
249 	void *cookie,
250 	void *handle,
251 	unsigned int flags)
252 {
253 
254 #if TRUSTED_BOARD_BOOT
255 	/*
256 	 * Dispatch FWU calls to FWU SMC handler and return its return
257 	 * value
258 	 */
259 	if (is_fwu_fid(smc_fid)) {
260 		return bl1_fwu_smc_handler(smc_fid, x1, x2, x3, x4, cookie,
261 			handle, flags);
262 	}
263 #endif
264 
265 	switch (smc_fid) {
266 	case BL1_SMC_CALL_COUNT:
267 		SMC_RET1(handle, BL1_NUM_SMC_CALLS);
268 
269 	case BL1_SMC_UID:
270 		SMC_UUID_RET(handle, bl1_svc_uid);
271 
272 	case BL1_SMC_VERSION:
273 		SMC_RET1(handle, BL1_SMC_MAJOR_VER | BL1_SMC_MINOR_VER);
274 
275 	default:
276 		break;
277 	}
278 
279 	WARN("Unimplemented BL1 SMC Call: 0x%x \n", smc_fid);
280 	SMC_RET1(handle, SMC_UNK);
281 }
282 
283 /*******************************************************************************
284  * BL1 SMC wrapper.  This function is only used in AArch32 mode to ensure ABI
285  * compliance when invoking bl1_smc_handler.
286  ******************************************************************************/
bl1_smc_wrapper(uint32_t smc_fid,void * cookie,void * handle,unsigned int flags)287 register_t bl1_smc_wrapper(uint32_t smc_fid,
288 	void *cookie,
289 	void *handle,
290 	unsigned int flags)
291 {
292 	register_t x1, x2, x3, x4;
293 
294 	assert(handle);
295 
296 	get_smc_params_from_ctx(handle, x1, x2, x3, x4);
297 	return bl1_smc_handler(smc_fid, x1, x2, x3, x4, cookie, handle, flags);
298 }
299