1 /*
2  * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl31.h>
11 #include <bl_common.h>
12 #include <console.h>
13 #include <cortex_a53.h>
14 #include <cortex_a57.h>
15 #include <debug.h>
16 #include <denver.h>
17 #include <errno.h>
18 #include <memctrl.h>
19 #include <mmio.h>
20 #include <platform.h>
21 #include <platform_def.h>
22 #include <stddef.h>
23 #include <string.h>
24 #include <tegra_def.h>
25 #include <tegra_private.h>
26 
27 extern void zeromem16(void *mem, unsigned int length);
28 
29 /*******************************************************************************
30  * Declarations of linker defined symbols which will help us find the layout
31  * of trusted SRAM
32  ******************************************************************************/
33 extern unsigned long __TEXT_START__;
34 extern unsigned long __TEXT_END__;
35 extern unsigned long __RW_START__;
36 extern unsigned long __RW_END__;
37 extern unsigned long __RODATA_START__;
38 extern unsigned long __RODATA_END__;
39 extern unsigned long __BL31_END__;
40 
41 extern uint64_t tegra_bl31_phys_base;
42 extern uint64_t tegra_console_base;
43 
44 /*
45  * The next 3 constants identify the extents of the code, RO data region and the
46  * limit of the BL3-1 image.  These addresses are used by the MMU setup code and
47  * therefore they must be page-aligned.  It is the responsibility of the linker
48  * script to ensure that __RO_START__, __RO_END__ & __BL31_END__ linker symbols
49  * refer to page-aligned addresses.
50  */
51 #define BL31_RW_START (unsigned long)(&__RW_START__)
52 #define BL31_RW_END (unsigned long)(&__RW_END__)
53 #define BL31_RODATA_BASE (unsigned long)(&__RODATA_START__)
54 #define BL31_RODATA_END (unsigned long)(&__RODATA_END__)
55 #define BL31_END (unsigned long)(&__BL31_END__)
56 
57 static entry_point_info_t bl33_image_ep_info, bl32_image_ep_info;
58 static plat_params_from_bl2_t plat_bl31_params_from_bl2 = {
59 	.tzdram_size = (uint64_t)TZDRAM_SIZE
60 };
61 
62 /*******************************************************************************
63  * This variable holds the non-secure image entry address
64  ******************************************************************************/
65 extern uint64_t ns_image_entrypoint;
66 
67 /*******************************************************************************
68  * The following platform setup functions are weakly defined. They
69  * provide typical implementations that will be overridden by a SoC.
70  ******************************************************************************/
71 #pragma weak plat_early_platform_setup
72 #pragma weak plat_get_bl31_params
73 #pragma weak plat_get_bl31_plat_params
74 
plat_early_platform_setup(void)75 void plat_early_platform_setup(void)
76 {
77 	; /* do nothing */
78 }
79 
plat_get_bl31_params(void)80 bl31_params_t *plat_get_bl31_params(void)
81 {
82 	return NULL;
83 }
84 
plat_get_bl31_plat_params(void)85 plat_params_from_bl2_t *plat_get_bl31_plat_params(void)
86 {
87 	return NULL;
88 }
89 
90 /*******************************************************************************
91  * Return a pointer to the 'entry_point_info' structure of the next image for
92  * security state specified. BL33 corresponds to the non-secure image type
93  * while BL32 corresponds to the secure image type.
94  ******************************************************************************/
bl31_plat_get_next_image_ep_info(uint32_t type)95 entry_point_info_t *bl31_plat_get_next_image_ep_info(uint32_t type)
96 {
97 	if (type == NON_SECURE)
98 		return &bl33_image_ep_info;
99 
100 	/* return BL32 entry point info if it is valid */
101 	if (type == SECURE && bl32_image_ep_info.pc)
102 		return &bl32_image_ep_info;
103 
104 	return NULL;
105 }
106 
107 /*******************************************************************************
108  * Return a pointer to the 'plat_params_from_bl2_t' structure. The BL2 image
109  * passes this platform specific information.
110  ******************************************************************************/
bl31_get_plat_params(void)111 plat_params_from_bl2_t *bl31_get_plat_params(void)
112 {
113 	return &plat_bl31_params_from_bl2;
114 }
115 
116 /*******************************************************************************
117  * Perform any BL31 specific platform actions. Populate the BL33 and BL32 image
118  * info.
119  ******************************************************************************/
bl31_early_platform_setup(bl31_params_t * from_bl2,void * plat_params_from_bl2)120 void bl31_early_platform_setup(bl31_params_t *from_bl2,
121 				void *plat_params_from_bl2)
122 {
123 	plat_params_from_bl2_t *plat_params =
124 		(plat_params_from_bl2_t *)plat_params_from_bl2;
125 #if LOG_LEVEL >= LOG_LEVEL_INFO
126 	int impl = (read_midr() >> MIDR_IMPL_SHIFT) & MIDR_IMPL_MASK;
127 #endif
128 	image_info_t bl32_img_info = { {0} };
129 	uint64_t tzdram_start, tzdram_end, bl32_start, bl32_end;
130 
131 	/*
132 	 * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
133 	 * there's no argument to relay from a previous bootloader. Platforms
134 	 * might use custom ways to get arguments, so provide handlers which
135 	 * they can override.
136 	 */
137 	if (from_bl2 == NULL)
138 		from_bl2 = plat_get_bl31_params();
139 	if (plat_params == NULL)
140 		plat_params = plat_get_bl31_plat_params();
141 
142 	/*
143 	 * Copy BL3-3, BL3-2 entry point information.
144 	 * They are stored in Secure RAM, in BL2's address space.
145 	 */
146 	assert(from_bl2);
147 	assert(from_bl2->bl33_ep_info);
148 	bl33_image_ep_info = *from_bl2->bl33_ep_info;
149 
150 	if (from_bl2->bl32_ep_info)
151 		bl32_image_ep_info = *from_bl2->bl32_ep_info;
152 
153 	/*
154 	 * Parse platform specific parameters - TZDRAM aperture base and size
155 	 */
156 	assert(plat_params);
157 	plat_bl31_params_from_bl2.tzdram_base = plat_params->tzdram_base;
158 	plat_bl31_params_from_bl2.tzdram_size = plat_params->tzdram_size;
159 	plat_bl31_params_from_bl2.uart_id = plat_params->uart_id;
160 
161 	/*
162 	 * It is very important that we run either from TZDRAM or TZSRAM base.
163 	 * Add an explicit check here.
164 	 */
165 	if ((plat_bl31_params_from_bl2.tzdram_base != BL31_BASE) &&
166 	    (TEGRA_TZRAM_BASE != BL31_BASE))
167 		panic();
168 
169 	/*
170 	 * Get the base address of the UART controller to be used for the
171 	 * console
172 	 */
173 	tegra_console_base = plat_get_console_from_id(plat_params->uart_id);
174 
175 	if (tegra_console_base != (uint64_t)0) {
176 		/*
177 		 * Configure the UART port to be used as the console
178 		 */
179 		console_init(tegra_console_base, TEGRA_BOOT_UART_CLK_IN_HZ,
180 			TEGRA_CONSOLE_BAUDRATE);
181 	}
182 
183 	/*
184 	 * Initialize delay timer
185 	 */
186 	tegra_delay_timer_init();
187 
188 	/*
189 	 * Do initial security configuration to allow DRAM/device access.
190 	 */
191 	tegra_memctrl_tzdram_setup(plat_bl31_params_from_bl2.tzdram_base,
192 			plat_bl31_params_from_bl2.tzdram_size);
193 
194 	/*
195 	 * The previous bootloader might not have placed the BL32 image
196 	 * inside the TZDRAM. We check the BL32 image info to find out
197 	 * the base/PC values and relocate the image if necessary.
198 	 */
199 	if (from_bl2->bl32_image_info) {
200 
201 		bl32_img_info = *from_bl2->bl32_image_info;
202 
203 		/* Relocate BL32 if it resides outside of the TZDRAM */
204 		tzdram_start = plat_bl31_params_from_bl2.tzdram_base;
205 		tzdram_end = plat_bl31_params_from_bl2.tzdram_base +
206 				plat_bl31_params_from_bl2.tzdram_size;
207 		bl32_start = bl32_img_info.image_base;
208 		bl32_end = bl32_img_info.image_base + bl32_img_info.image_size;
209 
210 		assert(tzdram_end > tzdram_start);
211 		assert(bl32_end > bl32_start);
212 		assert(bl32_image_ep_info.pc > tzdram_start);
213 		assert(bl32_image_ep_info.pc < tzdram_end);
214 
215 		/* relocate BL32 */
216 		if (bl32_start >= tzdram_end || bl32_end <= tzdram_start) {
217 
218 			INFO("Relocate BL32 to TZDRAM\n");
219 
220 			memcpy16((void *)(uintptr_t)bl32_image_ep_info.pc,
221 				 (void *)(uintptr_t)bl32_start,
222 				 bl32_img_info.image_size);
223 
224 			/* clean up non-secure intermediate buffer */
225 			zeromem16((void *)(uintptr_t)bl32_start,
226 				bl32_img_info.image_size);
227 		}
228 	}
229 
230 	/* Early platform setup for Tegra SoCs */
231 	plat_early_platform_setup();
232 
233 	INFO("BL3-1: Boot CPU: %s Processor [%lx]\n", (impl == DENVER_IMPL) ?
234 		"Denver" : "ARM", read_mpidr());
235 }
236 
237 /*******************************************************************************
238  * Initialize the gic, configure the SCR.
239  ******************************************************************************/
bl31_platform_setup(void)240 void bl31_platform_setup(void)
241 {
242 	uint32_t tmp_reg;
243 
244 	/* Initialize the gic cpu and distributor interfaces */
245 	plat_gic_setup();
246 
247 	/*
248 	 * Setup secondary CPU POR infrastructure.
249 	 */
250 	plat_secondary_setup();
251 
252 	/*
253 	 * Initial Memory Controller configuration.
254 	 */
255 	tegra_memctrl_setup();
256 
257 	/*
258 	 * Set up the TZRAM memory aperture to allow only secure world
259 	 * access
260 	 */
261 	tegra_memctrl_tzram_setup(TEGRA_TZRAM_BASE, TEGRA_TZRAM_SIZE);
262 
263 	/* Set the next EL to be AArch64 */
264 	tmp_reg = SCR_RES1_BITS | SCR_RW_BIT;
265 	write_scr(tmp_reg);
266 
267 	INFO("BL3-1: Tegra platform setup complete\n");
268 }
269 
270 /*******************************************************************************
271  * Perform any BL3-1 platform runtime setup prior to BL3-1 cold boot exit
272  ******************************************************************************/
bl31_plat_runtime_setup(void)273 void bl31_plat_runtime_setup(void)
274 {
275 	/*
276 	 * During boot, USB3 and flash media (SDMMC/SATA) devices need
277 	 * access to IRAM. Because these clients connect to the MC and
278 	 * do not have a direct path to the IRAM, the MC implements AHB
279 	 * redirection during boot to allow path to IRAM. In this mode
280 	 * accesses to a programmed memory address aperture are directed
281 	 * to the AHB bus, allowing access to the IRAM. This mode must be
282 	 * disabled before we jump to the non-secure world.
283 	 */
284 	tegra_memctrl_disable_ahb_redirection();
285 }
286 
287 /*******************************************************************************
288  * Perform the very early platform specific architectural setup here. At the
289  * moment this only intializes the mmu in a quick and dirty way.
290  ******************************************************************************/
bl31_plat_arch_setup(void)291 void bl31_plat_arch_setup(void)
292 {
293 	unsigned long rw_start = BL31_RW_START;
294 	unsigned long rw_size = BL31_RW_END - BL31_RW_START;
295 	unsigned long rodata_start = BL31_RODATA_BASE;
296 	unsigned long rodata_size = BL31_RODATA_END - BL31_RODATA_BASE;
297 	unsigned long code_base = (unsigned long)(&__TEXT_START__);
298 	unsigned long code_size = (unsigned long)(&__TEXT_END__) - code_base;
299 	const mmap_region_t *plat_mmio_map = NULL;
300 #if USE_COHERENT_MEM
301 	unsigned long coh_start, coh_size;
302 #endif
303 	plat_params_from_bl2_t *params_from_bl2 = bl31_get_plat_params();
304 
305 	/* add memory regions */
306 	mmap_add_region(rw_start, rw_start,
307 			rw_size,
308 			MT_MEMORY | MT_RW | MT_SECURE);
309 	mmap_add_region(rodata_start, rodata_start,
310 			rodata_size,
311 			MT_RO_DATA | MT_SECURE);
312 	mmap_add_region(code_base, code_base,
313 			code_size,
314 			MT_CODE | MT_SECURE);
315 
316 	/* map TZDRAM used by BL31 as coherent memory */
317 	if (TEGRA_TZRAM_BASE == tegra_bl31_phys_base) {
318 		mmap_add_region(params_from_bl2->tzdram_base,
319 				params_from_bl2->tzdram_base,
320 				BL31_SIZE,
321 				MT_DEVICE | MT_RW | MT_SECURE);
322 	}
323 
324 #if USE_COHERENT_MEM
325 	coh_start = total_base + (BL_COHERENT_RAM_BASE - BL31_RO_BASE);
326 	coh_size = BL_COHERENT_RAM_END - BL_COHERENT_RAM_BASE;
327 
328 	mmap_add_region(coh_start, coh_start,
329 			coh_size,
330 			MT_DEVICE | MT_RW | MT_SECURE);
331 #endif
332 
333 	/* map on-chip free running uS timer */
334 	mmap_add_region(page_align((uint64_t)TEGRA_TMRUS_BASE, 0),
335 			page_align((uint64_t)TEGRA_TMRUS_BASE, 0),
336 			(uint64_t)TEGRA_TMRUS_SIZE,
337 			MT_DEVICE | MT_RO | MT_SECURE);
338 
339 	/* add MMIO space */
340 	plat_mmio_map = plat_get_mmio_map();
341 	if (plat_mmio_map)
342 		mmap_add(plat_mmio_map);
343 	else
344 		WARN("MMIO map not available\n");
345 
346 	/* set up translation tables */
347 	init_xlat_tables();
348 
349 	/* enable the MMU */
350 	enable_mmu_el3(0);
351 
352 	INFO("BL3-1: Tegra: MMU enabled\n");
353 }
354 
355 /*******************************************************************************
356  * Check if the given NS DRAM range is valid
357  ******************************************************************************/
bl31_check_ns_address(uint64_t base,uint64_t size_in_bytes)358 int bl31_check_ns_address(uint64_t base, uint64_t size_in_bytes)
359 {
360 	uint64_t end = base + size_in_bytes;
361 
362 	/*
363 	 * Check if the NS DRAM address is valid
364 	 */
365 	if ((base < TEGRA_DRAM_BASE) || (end > TEGRA_DRAM_END)) {
366 		ERROR("NS address is out-of-bounds!\n");
367 		return -EFAULT;
368 	}
369 
370 	/*
371 	 * TZDRAM aperture contains the BL31 and BL32 images, so we need
372 	 * to check if the NS DRAM range overlaps the TZDRAM aperture.
373 	 */
374 	if ((base < TZDRAM_END) && (end > tegra_bl31_phys_base)) {
375 		ERROR("NS address overlaps TZDRAM!\n");
376 		return -ENOTSUP;
377 	}
378 
379 	/* valid NS address */
380 	return 0;
381 }
382