1 /** @file
2   Compute the logrithm of x.
3 
4   Copyright (c) 2010 - 2011, Intel Corporation. All rights reserved.<BR>
5   This program and the accompanying materials are licensed and made available under
6   the terms and conditions of the BSD License that accompanies this distribution.
7   The full text of the license may be found at
8   http://opensource.org/licenses/bsd-license.
9 
10   THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11   WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12 
13  * ====================================================
14  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
15  *
16  * Developed at SunPro, a Sun Microsystems, Inc. business.
17  * Permission to use, copy, modify, and distribute this
18  * software is freely granted, provided that this notice
19  * is preserved.
20  * ====================================================
21 
22   e_sqrt.c 5.1 93/09/24
23   NetBSD: e_sqrt.c,v 1.12 2002/05/26 22:01:52 wiz Exp
24 **/
25 #include  <LibConfig.h>
26 #include  <sys/EfiCdefs.h>
27 
28 #include  <errno.h>
29 #include "math.h"
30 #include "math_private.h"
31 
32 #if defined(_MSC_VER)           /* Handle Microsoft VC++ compiler specifics. */
33 // potential divide by 0 -- near line 129, (x-x)/(x-x) is on purpose
34 #pragma warning ( disable : 4723 )
35 #endif
36 
37 /* __ieee754_sqrt(x)
38  * Return correctly rounded sqrt.
39  *           ------------------------------------------
40  *       |  Use the hardware sqrt if you have one |
41  *           ------------------------------------------
42  * Method:
43  *   Bit by bit method using integer arithmetic. (Slow, but portable)
44  *   1. Normalization
45  *  Scale x to y in [1,4) with even powers of 2:
46  *  find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
47  *    sqrt(x) = 2^k * sqrt(y)
48  *   2. Bit by bit computation
49  *  Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
50  *       i               0
51  *                                     i+1         2
52  *      s  = 2*q , and  y  =  2   * ( y - q  ).   (1)
53  *       i      i            i                 i
54  *
55  *  To compute q    from q , one checks whether
56  *        i+1       i
57  *
58  *            -(i+1) 2
59  *      (q + 2      ) <= y.     (2)
60  *            i
61  *                    -(i+1)
62  *  If (2) is false, then q   = q ; otherwise q   = q  + 2      .
63  *             i+1   i             i+1   i
64  *
65  *  With some algebric manipulation, it is not difficult to see
66  *  that (2) is equivalent to
67  *                             -(i+1)
68  *      s  +  2       <= y      (3)
69  *       i                i
70  *
71  *  The advantage of (3) is that s  and y  can be computed by
72  *              i      i
73  *  the following recurrence formula:
74  *      if (3) is false
75  *
76  *      s     =  s  , y    = y   ;      (4)
77  *       i+1      i    i+1    i
78  *
79  *      otherwise,
80  *                         -i                     -(i+1)
81  *      s   =  s  + 2  ,  y    = y  -  s  - 2     (5)
82  *           i+1      i          i+1    i     i
83  *
84  *  One may easily use induction to prove (4) and (5).
85  *  Note. Since the left hand side of (3) contain only i+2 bits,
86  *        it does not necessary to do a full (53-bit) comparison
87  *        in (3).
88  *   3. Final rounding
89  *  After generating the 53 bits result, we compute one more bit.
90  *  Together with the remainder, we can decide whether the
91  *  result is exact, bigger than 1/2ulp, or less than 1/2ulp
92  *  (it will never equal to 1/2ulp).
93  *  The rounding mode can be detected by checking whether
94  *  huge + tiny is equal to huge, and whether huge - tiny is
95  *  equal to huge for some floating point number "huge" and "tiny".
96  *
97  * Special cases:
98  *  sqrt(+-0) = +-0   ... exact
99  *  sqrt(inf) = inf
100  *  sqrt(-ve) = NaN   ... with invalid signal
101  *  sqrt(NaN) = NaN   ... with invalid signal for signaling NaN
102  *
103  * Other methods : see the appended file at the end of the program below.
104  *---------------
105  */
106 
107 static  const double  one = 1.0, tiny=1.0e-300;
108 
109 double
__ieee754_sqrt(double x)110 __ieee754_sqrt(double x)
111 {
112   double z;
113   int32_t sign = (int)0x80000000;
114   int32_t ix0,s0,q,m,t,i;
115   u_int32_t r,t1,s1,ix1,q1;
116 
117   EXTRACT_WORDS(ix0,ix1,x);
118 
119     /* take care of Inf and NaN */
120   if((ix0&0x7ff00000)==0x7ff00000) {
121       return x*x+x;   /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
122              sqrt(-inf)=sNaN */
123   }
124     /* take care of zero */
125   if(ix0<=0) {
126       if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
127       else if(ix0<0) {
128         errno = EDOM;
129         return (x-x)/(x-x);   /* sqrt(-ve) = sNaN */
130       }
131   }
132     /* normalize x */
133   m = (ix0>>20);
134   if(m==0) {        /* subnormal x */
135       while(ix0==0) {
136     m -= 21;
137     ix0 |= (ix1>>11); ix1 <<= 21;
138       }
139       for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
140       m -= i-1;
141       ix0 |= (ix1>>(32-i));
142       ix1 <<= i;
143   }
144   m -= 1023;  /* unbias exponent */
145   ix0 = (ix0&0x000fffff)|0x00100000;
146   if(m&1){  /* odd m, double x to make it even */
147       ix0 += ix0 + ((ix1&sign)>>31);
148       ix1 += ix1;
149   }
150   m >>= 1;  /* m = [m/2] */
151 
152     /* generate sqrt(x) bit by bit */
153   ix0 += ix0 + ((ix1&sign)>>31);
154   ix1 += ix1;
155   q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
156   r = 0x00200000;   /* r = moving bit from right to left */
157 
158   while(r!=0) {
159       t = s0+r;
160       if(t<=ix0) {
161     s0   = t+r;
162     ix0 -= t;
163     q   += r;
164       }
165       ix0 += ix0 + ((ix1&sign)>>31);
166       ix1 += ix1;
167       r>>=1;
168   }
169 
170   r = sign;
171   while(r!=0) {
172       t1 = s1+r;
173       t  = s0;
174       if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
175     s1  = t1+r;
176     if(((t1&sign)==(u_int32_t)sign)&&(s1&sign)==0) s0 += 1;
177     ix0 -= t;
178     if (ix1 < t1) ix0 -= 1;
179     ix1 -= t1;
180     q1  += r;
181       }
182       ix0 += ix0 + ((ix1&sign)>>31);
183       ix1 += ix1;
184       r>>=1;
185   }
186 
187     /* use floating add to find out rounding direction */
188   if((ix0|ix1)!=0) {
189       z = one-tiny; /* trigger inexact flag */
190       if (z>=one) {
191           z = one+tiny;
192           if (q1==(u_int32_t)0xffffffff) { q1=0; q += 1;}
193     else if (z>one) {
194         if (q1==(u_int32_t)0xfffffffe) q+=1;
195         q1+=2;
196     } else
197               q1 += (q1&1);
198       }
199   }
200   ix0 = (q>>1)+0x3fe00000;
201   ix1 =  q1>>1;
202   if ((q&1)==1) ix1 |= sign;
203   ix0 += (m <<20);
204   INSERT_WORDS(z,ix0,ix1);
205   return z;
206 }
207 
208 /*
209 Other methods  (use floating-point arithmetic)
210 -------------
211 (This is a copy of a drafted paper by Prof W. Kahan
212 and K.C. Ng, written in May, 1986)
213 
214   Two algorithms are given here to implement sqrt(x)
215   (IEEE double precision arithmetic) in software.
216   Both supply sqrt(x) correctly rounded. The first algorithm (in
217   Section A) uses newton iterations and involves four divisions.
218   The second one uses reciproot iterations to avoid division, but
219   requires more multiplications. Both algorithms need the ability
220   to chop results of arithmetic operations instead of round them,
221   and the INEXACT flag to indicate when an arithmetic operation
222   is executed exactly with no roundoff error, all part of the
223   standard (IEEE 754-1985). The ability to perform shift, add,
224   subtract and logical AND operations upon 32-bit words is needed
225   too, though not part of the standard.
226 
227 A.  sqrt(x) by Newton Iteration
228 
229    (1)  Initial approximation
230 
231   Let x0 and x1 be the leading and the trailing 32-bit words of
232   a floating point number x (in IEEE double format) respectively
233 
234       1    11        52         ...widths
235      ------------------------------------------------------
236   x: |s|    e     |       f       |
237      ------------------------------------------------------
238         msb    lsb  msb             lsb ...order
239 
240 
241        ------------------------        ------------------------
242   x0:  |s|   e    |    f1     |  x1: |          f2           |
243        ------------------------        ------------------------
244 
245   By performing shifts and subtracts on x0 and x1 (both regarded
246   as integers), we obtain an 8-bit approximation of sqrt(x) as
247   follows.
248 
249     k  := (x0>>1) + 0x1ff80000;
250     y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
251   Here k is a 32-bit integer and T1[] is an integer array containing
252   correction terms. Now magically the floating value of y (y's
253   leading 32-bit word is y0, the value of its trailing word is 0)
254   approximates sqrt(x) to almost 8-bit.
255 
256   Value of T1:
257   static int T1[32]= {
258   0,  1024, 3062, 5746, 9193, 13348,  18162,  23592,
259   29598,  36145,  43202,  50740,  58733,  67158,  75992,  85215,
260   83599,  71378,  60428,  50647,  41945,  34246,  27478,  21581,
261   16499,  12183,  8588, 5674, 3403, 1742, 661,  130,};
262 
263     (2) Iterative refinement
264 
265   Apply Heron's rule three times to y, we have y approximates
266   sqrt(x) to within 1 ulp (Unit in the Last Place):
267 
268     y := (y+x/y)/2    ... almost 17 sig. bits
269     y := (y+x/y)/2    ... almost 35 sig. bits
270     y := y-(y-x/y)/2  ... within 1 ulp
271 
272 
273   Remark 1.
274       Another way to improve y to within 1 ulp is:
275 
276     y := (y+x/y)    ... almost 17 sig. bits to 2*sqrt(x)
277     y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
278 
279         2
280           (x-y )*y
281     y := y + 2* ----------  ...within 1 ulp
282              2
283            3y  + x
284 
285 
286   This formula has one division fewer than the one above; however,
287   it requires more multiplications and additions. Also x must be
288   scaled in advance to avoid spurious overflow in evaluating the
289   expression 3y*y+x. Hence it is not recommended uless division
290   is slow. If division is very slow, then one should use the
291   reciproot algorithm given in section B.
292 
293     (3) Final adjustment
294 
295   By twiddling y's last bit it is possible to force y to be
296   correctly rounded according to the prevailing rounding mode
297   as follows. Let r and i be copies of the rounding mode and
298   inexact flag before entering the square root program. Also we
299   use the expression y+-ulp for the next representable floating
300   numbers (up and down) of y. Note that y+-ulp = either fixed
301   point y+-1, or multiply y by nextafter(1,+-inf) in chopped
302   mode.
303 
304     I := FALSE; ... reset INEXACT flag I
305     R := RZ;  ... set rounding mode to round-toward-zero
306     z := x/y; ... chopped quotient, possibly inexact
307     If(not I) then {  ... if the quotient is exact
308         if(z=y) {
309             I := i;  ... restore inexact flag
310             R := r;  ... restore rounded mode
311             return sqrt(x):=y.
312         } else {
313       z := z - ulp; ... special rounding
314         }
315     }
316     i := TRUE;    ... sqrt(x) is inexact
317     If (r=RN) then z=z+ulp  ... rounded-to-nearest
318     If (r=RP) then {  ... round-toward-+inf
319         y = y+ulp; z=z+ulp;
320     }
321     y := y+z;   ... chopped sum
322     y0:=y0-0x00100000;  ... y := y/2 is correctly rounded.
323           I := i;     ... restore inexact flag
324           R := r;     ... restore rounded mode
325           return sqrt(x):=y.
326 
327     (4) Special cases
328 
329   Square root of +inf, +-0, or NaN is itself;
330   Square root of a negative number is NaN with invalid signal.
331 
332 
333 B.  sqrt(x) by Reciproot Iteration
334 
335    (1)  Initial approximation
336 
337   Let x0 and x1 be the leading and the trailing 32-bit words of
338   a floating point number x (in IEEE double format) respectively
339   (see section A). By performing shifs and subtracts on x0 and y0,
340   we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
341 
342       k := 0x5fe80000 - (x0>>1);
343       y0:= k - T2[63&(k>>14)].  ... y ~ 1/sqrt(x) to 7.8 bits
344 
345   Here k is a 32-bit integer and T2[] is an integer array
346   containing correction terms. Now magically the floating
347   value of y (y's leading 32-bit word is y0, the value of
348   its trailing word y1 is set to zero) approximates 1/sqrt(x)
349   to almost 7.8-bit.
350 
351   Value of T2:
352   static int T2[64]= {
353   0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
354   0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
355   0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
356   0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
357   0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
358   0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
359   0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
360   0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
361 
362     (2) Iterative refinement
363 
364   Apply Reciproot iteration three times to y and multiply the
365   result by x to get an approximation z that matches sqrt(x)
366   to about 1 ulp. To be exact, we will have
367     -1ulp < sqrt(x)-z<1.0625ulp.
368 
369   ... set rounding mode to Round-to-nearest
370      y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
371      y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
372   ... special arrangement for better accuracy
373      z := x*y     ... 29 bits to sqrt(x), with z*y<1
374      z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
375 
376   Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
377   (a) the term z*y in the final iteration is always less than 1;
378   (b) the error in the final result is biased upward so that
379     -1 ulp < sqrt(x) - z < 1.0625 ulp
380       instead of |sqrt(x)-z|<1.03125ulp.
381 
382     (3) Final adjustment
383 
384   By twiddling y's last bit it is possible to force y to be
385   correctly rounded according to the prevailing rounding mode
386   as follows. Let r and i be copies of the rounding mode and
387   inexact flag before entering the square root program. Also we
388   use the expression y+-ulp for the next representable floating
389   numbers (up and down) of y. Note that y+-ulp = either fixed
390   point y+-1, or multiply y by nextafter(1,+-inf) in chopped
391   mode.
392 
393   R := RZ;    ... set rounding mode to round-toward-zero
394   switch(r) {
395       case RN:    ... round-to-nearest
396          if(x<= z*(z-ulp)...chopped) z = z - ulp; else
397          if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
398          break;
399       case RZ:case RM:  ... round-to-zero or round-to--inf
400          R:=RP;   ... reset rounding mod to round-to-+inf
401          if(x<z*z ... rounded up) z = z - ulp; else
402          if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
403          break;
404       case RP:    ... round-to-+inf
405          if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
406          if(x>z*z ...chopped) z = z+ulp;
407          break;
408   }
409 
410   Remark 3. The above comparisons can be done in fixed point. For
411   example, to compare x and w=z*z chopped, it suffices to compare
412   x1 and w1 (the trailing parts of x and w), regarding them as
413   two's complement integers.
414 
415   ...Is z an exact square root?
416   To determine whether z is an exact square root of x, let z1 be the
417   trailing part of z, and also let x0 and x1 be the leading and
418   trailing parts of x.
419 
420   If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
421       I := 1;   ... Raise Inexact flag: z is not exact
422   else {
423       j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
424       k := z1 >> 26;    ... get z's 25-th and 26-th
425               fraction bits
426       I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
427   }
428   R:= r   ... restore rounded mode
429   return sqrt(x):=z.
430 
431   If multiplication is cheaper than the foregoing red tape, the
432   Inexact flag can be evaluated by
433 
434       I := i;
435       I := (z*z!=x) or I.
436 
437   Note that z*z can overwrite I; this value must be sensed if it is
438   True.
439 
440   Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
441   zero.
442 
443         --------------------
444     z1: |        f2        |
445         --------------------
446     bit 31       bit 0
447 
448   Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
449   or even of logb(x) have the following relations:
450 
451   -------------------------------------------------
452   bit 27,26 of z1   bit 1,0 of x1 logb(x)
453   -------------------------------------------------
454   00      00    odd and even
455   01      01    even
456   10      10    odd
457   10      00    even
458   11      01    even
459   -------------------------------------------------
460 
461     (4) Special cases (see (4) of Section A).
462 
463  */
464 
465