1 /*
2  * Copyright (c) 2013-2015, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <assert.h>
9 #include <bakery_lock.h>
10 #include <cpu_data.h>
11 #include <platform.h>
12 #include <string.h>
13 
14 /*
15  * Functions in this file implement Bakery Algorithm for mutual exclusion with the
16  * bakery lock data structures in coherent memory.
17  *
18  * ARM architecture offers a family of exclusive access instructions to
19  * efficiently implement mutual exclusion with hardware support. However, as
20  * well as depending on external hardware, the these instructions have defined
21  * behavior only on certain memory types (cacheable and Normal memory in
22  * particular; see ARMv8 Architecture Reference Manual section B2.10). Use cases
23  * in trusted firmware are such that mutual exclusion implementation cannot
24  * expect that accesses to the lock have the specific type required by the
25  * architecture for these primitives to function (for example, not all
26  * contenders may have address translation enabled).
27  *
28  * This implementation does not use mutual exclusion primitives. It expects
29  * memory regions where the locks reside to be fully ordered and coherent
30  * (either by disabling address translation, or by assigning proper attributes
31  * when translation is enabled).
32  *
33  * Note that the ARM architecture guarantees single-copy atomicity for aligned
34  * accesses regardless of status of address translation.
35  */
36 
37 #define assert_bakery_entry_valid(entry, bakery) do {	\
38 	assert(bakery);					\
39 	assert(entry < BAKERY_LOCK_MAX_CPUS);		\
40 } while (0)
41 
42 /* Obtain a ticket for a given CPU */
bakery_get_ticket(bakery_lock_t * bakery,unsigned int me)43 static unsigned int bakery_get_ticket(bakery_lock_t *bakery, unsigned int me)
44 {
45 	unsigned int my_ticket, their_ticket;
46 	unsigned int they;
47 
48 	/* Prevent recursive acquisition */
49 	assert(!bakery_ticket_number(bakery->lock_data[me]));
50 
51 	/*
52 	 * Flag that we're busy getting our ticket. All CPUs are iterated in the
53 	 * order of their ordinal position to decide the maximum ticket value
54 	 * observed so far. Our priority is set to be greater than the maximum
55 	 * observed priority
56 	 *
57 	 * Note that it's possible that more than one contender gets the same
58 	 * ticket value. That's OK as the lock is acquired based on the priority
59 	 * value, not the ticket value alone.
60 	 */
61 	my_ticket = 0;
62 	bakery->lock_data[me] = make_bakery_data(CHOOSING_TICKET, my_ticket);
63 	for (they = 0; they < BAKERY_LOCK_MAX_CPUS; they++) {
64 		their_ticket = bakery_ticket_number(bakery->lock_data[they]);
65 		if (their_ticket > my_ticket)
66 			my_ticket = their_ticket;
67 	}
68 
69 	/*
70 	 * Compute ticket; then signal to other contenders waiting for us to
71 	 * finish calculating our ticket value that we're done
72 	 */
73 	++my_ticket;
74 	bakery->lock_data[me] = make_bakery_data(CHOSEN_TICKET, my_ticket);
75 
76 	return my_ticket;
77 }
78 
79 
80 /*
81  * Acquire bakery lock
82  *
83  * Contending CPUs need first obtain a non-zero ticket and then calculate
84  * priority value. A contending CPU iterate over all other CPUs in the platform,
85  * which may be contending for the same lock, in the order of their ordinal
86  * position (CPU0, CPU1 and so on). A non-contending CPU will have its ticket
87  * (and priority) value as 0. The contending CPU compares its priority with that
88  * of others'. The CPU with the highest priority (lowest numerical value)
89  * acquires the lock
90  */
bakery_lock_get(bakery_lock_t * bakery)91 void bakery_lock_get(bakery_lock_t *bakery)
92 {
93 	unsigned int they, me;
94 	unsigned int my_ticket, my_prio, their_ticket;
95 	unsigned int their_bakery_data;
96 
97 	me = plat_my_core_pos();
98 
99 	assert_bakery_entry_valid(me, bakery);
100 
101 	/* Get a ticket */
102 	my_ticket = bakery_get_ticket(bakery, me);
103 
104 	/*
105 	 * Now that we got our ticket, compute our priority value, then compare
106 	 * with that of others, and proceed to acquire the lock
107 	 */
108 	my_prio = PRIORITY(my_ticket, me);
109 	for (they = 0; they < BAKERY_LOCK_MAX_CPUS; they++) {
110 		if (me == they)
111 			continue;
112 
113 		/* Wait for the contender to get their ticket */
114 		do {
115 			their_bakery_data = bakery->lock_data[they];
116 		} while (bakery_is_choosing(their_bakery_data));
117 
118 		/*
119 		 * If the other party is a contender, they'll have non-zero
120 		 * (valid) ticket value. If they do, compare priorities
121 		 */
122 		their_ticket = bakery_ticket_number(their_bakery_data);
123 		if (their_ticket && (PRIORITY(their_ticket, they) < my_prio)) {
124 			/*
125 			 * They have higher priority (lower value). Wait for
126 			 * their ticket value to change (either release the lock
127 			 * to have it dropped to 0; or drop and probably content
128 			 * again for the same lock to have an even higher value)
129 			 */
130 			do {
131 				wfe();
132 			} while (their_ticket ==
133 				bakery_ticket_number(bakery->lock_data[they]));
134 		}
135 	}
136 	/* Lock acquired */
137 }
138 
139 
140 /* Release the lock and signal contenders */
bakery_lock_release(bakery_lock_t * bakery)141 void bakery_lock_release(bakery_lock_t *bakery)
142 {
143 	unsigned int me = plat_my_core_pos();
144 
145 	assert_bakery_entry_valid(me, bakery);
146 	assert(bakery_ticket_number(bakery->lock_data[me]));
147 
148 	/*
149 	 * Release lock by resetting ticket. Then signal other
150 	 * waiting contenders
151 	 */
152 	bakery->lock_data[me] = 0;
153 	dsb();
154 	sev();
155 }
156