1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "instruction_simplifier.h"
18
19 #include "art_method-inl.h"
20 #include "class_linker-inl.h"
21 #include "class_root.h"
22 #include "data_type-inl.h"
23 #include "escape.h"
24 #include "intrinsics.h"
25 #include "mirror/class-inl.h"
26 #include "scoped_thread_state_change-inl.h"
27 #include "sharpening.h"
28 #include "string_builder_append.h"
29
30 namespace art {
31
32 // Whether to run an exhaustive test of individual HInstructions cloning when each instruction
33 // is replaced with its copy if it is clonable.
34 static constexpr bool kTestInstructionClonerExhaustively = false;
35
36 class InstructionSimplifierVisitor : public HGraphDelegateVisitor {
37 public:
InstructionSimplifierVisitor(HGraph * graph,CodeGenerator * codegen,OptimizingCompilerStats * stats)38 InstructionSimplifierVisitor(HGraph* graph,
39 CodeGenerator* codegen,
40 OptimizingCompilerStats* stats)
41 : HGraphDelegateVisitor(graph),
42 codegen_(codegen),
43 stats_(stats) {}
44
45 bool Run();
46
47 private:
RecordSimplification()48 void RecordSimplification() {
49 simplification_occurred_ = true;
50 simplifications_at_current_position_++;
51 MaybeRecordStat(stats_, MethodCompilationStat::kInstructionSimplifications);
52 }
53
54 bool ReplaceRotateWithRor(HBinaryOperation* op, HUShr* ushr, HShl* shl);
55 bool TryReplaceWithRotate(HBinaryOperation* instruction);
56 bool TryReplaceWithRotateConstantPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
57 bool TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
58 bool TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op, HUShr* ushr, HShl* shl);
59
60 bool TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop);
61 // `op` should be either HOr or HAnd.
62 // De Morgan's laws:
63 // ~a & ~b = ~(a | b) and ~a | ~b = ~(a & b)
64 bool TryDeMorganNegationFactoring(HBinaryOperation* op);
65 bool TryHandleAssociativeAndCommutativeOperation(HBinaryOperation* instruction);
66 bool TrySubtractionChainSimplification(HBinaryOperation* instruction);
67 bool TryCombineVecMultiplyAccumulate(HVecMul* mul);
68
69 void VisitShift(HBinaryOperation* shift);
70 void VisitEqual(HEqual* equal) override;
71 void VisitNotEqual(HNotEqual* equal) override;
72 void VisitBooleanNot(HBooleanNot* bool_not) override;
73 void VisitInstanceFieldSet(HInstanceFieldSet* equal) override;
74 void VisitStaticFieldSet(HStaticFieldSet* equal) override;
75 void VisitArraySet(HArraySet* equal) override;
76 void VisitTypeConversion(HTypeConversion* instruction) override;
77 void VisitNullCheck(HNullCheck* instruction) override;
78 void VisitArrayLength(HArrayLength* instruction) override;
79 void VisitCheckCast(HCheckCast* instruction) override;
80 void VisitAbs(HAbs* instruction) override;
81 void VisitAdd(HAdd* instruction) override;
82 void VisitAnd(HAnd* instruction) override;
83 void VisitCondition(HCondition* instruction) override;
84 void VisitGreaterThan(HGreaterThan* condition) override;
85 void VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) override;
86 void VisitLessThan(HLessThan* condition) override;
87 void VisitLessThanOrEqual(HLessThanOrEqual* condition) override;
88 void VisitBelow(HBelow* condition) override;
89 void VisitBelowOrEqual(HBelowOrEqual* condition) override;
90 void VisitAbove(HAbove* condition) override;
91 void VisitAboveOrEqual(HAboveOrEqual* condition) override;
92 void VisitDiv(HDiv* instruction) override;
93 void VisitMul(HMul* instruction) override;
94 void VisitNeg(HNeg* instruction) override;
95 void VisitNot(HNot* instruction) override;
96 void VisitOr(HOr* instruction) override;
97 void VisitShl(HShl* instruction) override;
98 void VisitShr(HShr* instruction) override;
99 void VisitSub(HSub* instruction) override;
100 void VisitUShr(HUShr* instruction) override;
101 void VisitXor(HXor* instruction) override;
102 void VisitSelect(HSelect* select) override;
103 void VisitIf(HIf* instruction) override;
104 void VisitInstanceOf(HInstanceOf* instruction) override;
105 void VisitInvoke(HInvoke* invoke) override;
106 void VisitDeoptimize(HDeoptimize* deoptimize) override;
107 void VisitVecMul(HVecMul* instruction) override;
108
109 bool CanEnsureNotNullAt(HInstruction* instr, HInstruction* at) const;
110
111 void SimplifyRotate(HInvoke* invoke, bool is_left, DataType::Type type);
112 void SimplifySystemArrayCopy(HInvoke* invoke);
113 void SimplifyStringEquals(HInvoke* invoke);
114 void SimplifyCompare(HInvoke* invoke, bool is_signum, DataType::Type type);
115 void SimplifyIsNaN(HInvoke* invoke);
116 void SimplifyFP2Int(HInvoke* invoke);
117 void SimplifyStringCharAt(HInvoke* invoke);
118 void SimplifyStringIsEmptyOrLength(HInvoke* invoke);
119 void SimplifyStringIndexOf(HInvoke* invoke);
120 void SimplifyNPEOnArgN(HInvoke* invoke, size_t);
121 void SimplifyReturnThis(HInvoke* invoke);
122 void SimplifyAllocationIntrinsic(HInvoke* invoke);
123 void SimplifyMemBarrier(HInvoke* invoke, MemBarrierKind barrier_kind);
124 void SimplifyMin(HInvoke* invoke, DataType::Type type);
125 void SimplifyMax(HInvoke* invoke, DataType::Type type);
126 void SimplifyAbs(HInvoke* invoke, DataType::Type type);
127
128 CodeGenerator* codegen_;
129 OptimizingCompilerStats* stats_;
130 bool simplification_occurred_ = false;
131 int simplifications_at_current_position_ = 0;
132 // We ensure we do not loop infinitely. The value should not be too high, since that
133 // would allow looping around the same basic block too many times. The value should
134 // not be too low either, however, since we want to allow revisiting a basic block
135 // with many statements and simplifications at least once.
136 static constexpr int kMaxSamePositionSimplifications = 50;
137 };
138
Run()139 bool InstructionSimplifier::Run() {
140 if (kTestInstructionClonerExhaustively) {
141 CloneAndReplaceInstructionVisitor visitor(graph_);
142 visitor.VisitReversePostOrder();
143 }
144
145 InstructionSimplifierVisitor visitor(graph_, codegen_, stats_);
146 return visitor.Run();
147 }
148
Run()149 bool InstructionSimplifierVisitor::Run() {
150 bool didSimplify = false;
151 // Iterate in reverse post order to open up more simplifications to users
152 // of instructions that got simplified.
153 for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
154 // The simplification of an instruction to another instruction may yield
155 // possibilities for other simplifications. So although we perform a reverse
156 // post order visit, we sometimes need to revisit an instruction index.
157 do {
158 simplification_occurred_ = false;
159 VisitBasicBlock(block);
160 if (simplification_occurred_) {
161 didSimplify = true;
162 }
163 } while (simplification_occurred_ &&
164 (simplifications_at_current_position_ < kMaxSamePositionSimplifications));
165 simplifications_at_current_position_ = 0;
166 }
167 return didSimplify;
168 }
169
170 namespace {
171
AreAllBitsSet(HConstant * constant)172 bool AreAllBitsSet(HConstant* constant) {
173 return Int64FromConstant(constant) == -1;
174 }
175
176 } // namespace
177
178 // Returns true if the code was simplified to use only one negation operation
179 // after the binary operation instead of one on each of the inputs.
TryMoveNegOnInputsAfterBinop(HBinaryOperation * binop)180 bool InstructionSimplifierVisitor::TryMoveNegOnInputsAfterBinop(HBinaryOperation* binop) {
181 DCHECK(binop->IsAdd() || binop->IsSub());
182 DCHECK(binop->GetLeft()->IsNeg() && binop->GetRight()->IsNeg());
183 HNeg* left_neg = binop->GetLeft()->AsNeg();
184 HNeg* right_neg = binop->GetRight()->AsNeg();
185 if (!left_neg->HasOnlyOneNonEnvironmentUse() ||
186 !right_neg->HasOnlyOneNonEnvironmentUse()) {
187 return false;
188 }
189 // Replace code looking like
190 // NEG tmp1, a
191 // NEG tmp2, b
192 // ADD dst, tmp1, tmp2
193 // with
194 // ADD tmp, a, b
195 // NEG dst, tmp
196 // Note that we cannot optimize `(-a) + (-b)` to `-(a + b)` for floating-point.
197 // When `a` is `-0.0` and `b` is `0.0`, the former expression yields `0.0`,
198 // while the later yields `-0.0`.
199 if (!DataType::IsIntegralType(binop->GetType())) {
200 return false;
201 }
202 binop->ReplaceInput(left_neg->GetInput(), 0);
203 binop->ReplaceInput(right_neg->GetInput(), 1);
204 left_neg->GetBlock()->RemoveInstruction(left_neg);
205 right_neg->GetBlock()->RemoveInstruction(right_neg);
206 HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(binop->GetType(), binop);
207 binop->GetBlock()->InsertInstructionBefore(neg, binop->GetNext());
208 binop->ReplaceWithExceptInReplacementAtIndex(neg, 0);
209 RecordSimplification();
210 return true;
211 }
212
TryDeMorganNegationFactoring(HBinaryOperation * op)213 bool InstructionSimplifierVisitor::TryDeMorganNegationFactoring(HBinaryOperation* op) {
214 DCHECK(op->IsAnd() || op->IsOr()) << op->DebugName();
215 DataType::Type type = op->GetType();
216 HInstruction* left = op->GetLeft();
217 HInstruction* right = op->GetRight();
218
219 // We can apply De Morgan's laws if both inputs are Not's and are only used
220 // by `op`.
221 if (((left->IsNot() && right->IsNot()) ||
222 (left->IsBooleanNot() && right->IsBooleanNot())) &&
223 left->HasOnlyOneNonEnvironmentUse() &&
224 right->HasOnlyOneNonEnvironmentUse()) {
225 // Replace code looking like
226 // NOT nota, a
227 // NOT notb, b
228 // AND dst, nota, notb (respectively OR)
229 // with
230 // OR or, a, b (respectively AND)
231 // NOT dest, or
232 HInstruction* src_left = left->InputAt(0);
233 HInstruction* src_right = right->InputAt(0);
234 uint32_t dex_pc = op->GetDexPc();
235
236 // Remove the negations on the inputs.
237 left->ReplaceWith(src_left);
238 right->ReplaceWith(src_right);
239 left->GetBlock()->RemoveInstruction(left);
240 right->GetBlock()->RemoveInstruction(right);
241
242 // Replace the `HAnd` or `HOr`.
243 HBinaryOperation* hbin;
244 if (op->IsAnd()) {
245 hbin = new (GetGraph()->GetAllocator()) HOr(type, src_left, src_right, dex_pc);
246 } else {
247 hbin = new (GetGraph()->GetAllocator()) HAnd(type, src_left, src_right, dex_pc);
248 }
249 HInstruction* hnot;
250 if (left->IsBooleanNot()) {
251 hnot = new (GetGraph()->GetAllocator()) HBooleanNot(hbin, dex_pc);
252 } else {
253 hnot = new (GetGraph()->GetAllocator()) HNot(type, hbin, dex_pc);
254 }
255
256 op->GetBlock()->InsertInstructionBefore(hbin, op);
257 op->GetBlock()->ReplaceAndRemoveInstructionWith(op, hnot);
258
259 RecordSimplification();
260 return true;
261 }
262
263 return false;
264 }
265
TryCombineVecMultiplyAccumulate(HVecMul * mul)266 bool InstructionSimplifierVisitor::TryCombineVecMultiplyAccumulate(HVecMul* mul) {
267 DataType::Type type = mul->GetPackedType();
268 InstructionSet isa = codegen_->GetInstructionSet();
269 switch (isa) {
270 case InstructionSet::kArm64:
271 if (!(type == DataType::Type::kUint8 ||
272 type == DataType::Type::kInt8 ||
273 type == DataType::Type::kUint16 ||
274 type == DataType::Type::kInt16 ||
275 type == DataType::Type::kInt32)) {
276 return false;
277 }
278 break;
279 default:
280 return false;
281 }
282
283 ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
284
285 if (mul->HasOnlyOneNonEnvironmentUse()) {
286 HInstruction* use = mul->GetUses().front().GetUser();
287 if (use->IsVecAdd() || use->IsVecSub()) {
288 // Replace code looking like
289 // VECMUL tmp, x, y
290 // VECADD/SUB dst, acc, tmp
291 // with
292 // VECMULACC dst, acc, x, y
293 // Note that we do not want to (unconditionally) perform the merge when the
294 // multiplication has multiple uses and it can be merged in all of them.
295 // Multiple uses could happen on the same control-flow path, and we would
296 // then increase the amount of work. In the future we could try to evaluate
297 // whether all uses are on different control-flow paths (using dominance and
298 // reverse-dominance information) and only perform the merge when they are.
299 HInstruction* accumulator = nullptr;
300 HVecBinaryOperation* binop = use->AsVecBinaryOperation();
301 HInstruction* binop_left = binop->GetLeft();
302 HInstruction* binop_right = binop->GetRight();
303 // This is always true since the `HVecMul` has only one use (which is checked above).
304 DCHECK_NE(binop_left, binop_right);
305 if (binop_right == mul) {
306 accumulator = binop_left;
307 } else if (use->IsVecAdd()) {
308 DCHECK_EQ(binop_left, mul);
309 accumulator = binop_right;
310 }
311
312 HInstruction::InstructionKind kind =
313 use->IsVecAdd() ? HInstruction::kAdd : HInstruction::kSub;
314 if (accumulator != nullptr) {
315 HVecMultiplyAccumulate* mulacc =
316 new (allocator) HVecMultiplyAccumulate(allocator,
317 kind,
318 accumulator,
319 mul->GetLeft(),
320 mul->GetRight(),
321 binop->GetPackedType(),
322 binop->GetVectorLength(),
323 binop->GetDexPc());
324
325 binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
326 DCHECK(!mul->HasUses());
327 mul->GetBlock()->RemoveInstruction(mul);
328 return true;
329 }
330 }
331 }
332
333 return false;
334 }
335
VisitShift(HBinaryOperation * instruction)336 void InstructionSimplifierVisitor::VisitShift(HBinaryOperation* instruction) {
337 DCHECK(instruction->IsShl() || instruction->IsShr() || instruction->IsUShr());
338 HInstruction* shift_amount = instruction->GetRight();
339 HInstruction* value = instruction->GetLeft();
340
341 int64_t implicit_mask = (value->GetType() == DataType::Type::kInt64)
342 ? kMaxLongShiftDistance
343 : kMaxIntShiftDistance;
344
345 if (shift_amount->IsConstant()) {
346 int64_t cst = Int64FromConstant(shift_amount->AsConstant());
347 int64_t masked_cst = cst & implicit_mask;
348 if (masked_cst == 0) {
349 // Replace code looking like
350 // SHL dst, value, 0
351 // with
352 // value
353 instruction->ReplaceWith(value);
354 instruction->GetBlock()->RemoveInstruction(instruction);
355 RecordSimplification();
356 return;
357 } else if (masked_cst != cst) {
358 // Replace code looking like
359 // SHL dst, value, cst
360 // where cst exceeds maximum distance with the equivalent
361 // SHL dst, value, cst & implicit_mask
362 // (as defined by shift semantics). This ensures other
363 // optimizations do not need to special case for such situations.
364 DCHECK_EQ(shift_amount->GetType(), DataType::Type::kInt32);
365 instruction->ReplaceInput(GetGraph()->GetIntConstant(masked_cst), /* index= */ 1);
366 RecordSimplification();
367 return;
368 }
369 }
370
371 // Shift operations implicitly mask the shift amount according to the type width. Get rid of
372 // unnecessary And/Or/Xor/Add/Sub/TypeConversion operations on the shift amount that do not
373 // affect the relevant bits.
374 // Replace code looking like
375 // AND adjusted_shift, shift, <superset of implicit mask>
376 // [OR/XOR/ADD/SUB adjusted_shift, shift, <value not overlapping with implicit mask>]
377 // [<conversion-from-integral-non-64-bit-type> adjusted_shift, shift]
378 // SHL dst, value, adjusted_shift
379 // with
380 // SHL dst, value, shift
381 if (shift_amount->IsAnd() ||
382 shift_amount->IsOr() ||
383 shift_amount->IsXor() ||
384 shift_amount->IsAdd() ||
385 shift_amount->IsSub()) {
386 int64_t required_result = shift_amount->IsAnd() ? implicit_mask : 0;
387 HBinaryOperation* bin_op = shift_amount->AsBinaryOperation();
388 HConstant* mask = bin_op->GetConstantRight();
389 if (mask != nullptr && (Int64FromConstant(mask) & implicit_mask) == required_result) {
390 instruction->ReplaceInput(bin_op->GetLeastConstantLeft(), 1);
391 RecordSimplification();
392 return;
393 }
394 } else if (shift_amount->IsTypeConversion()) {
395 DCHECK_NE(shift_amount->GetType(), DataType::Type::kBool); // We never convert to bool.
396 DataType::Type source_type = shift_amount->InputAt(0)->GetType();
397 // Non-integral and 64-bit source types require an explicit type conversion.
398 if (DataType::IsIntegralType(source_type) && !DataType::Is64BitType(source_type)) {
399 instruction->ReplaceInput(shift_amount->AsTypeConversion()->GetInput(), 1);
400 RecordSimplification();
401 return;
402 }
403 }
404 }
405
IsSubRegBitsMinusOther(HSub * sub,size_t reg_bits,HInstruction * other)406 static bool IsSubRegBitsMinusOther(HSub* sub, size_t reg_bits, HInstruction* other) {
407 return (sub->GetRight() == other &&
408 sub->GetLeft()->IsConstant() &&
409 (Int64FromConstant(sub->GetLeft()->AsConstant()) & (reg_bits - 1)) == 0);
410 }
411
ReplaceRotateWithRor(HBinaryOperation * op,HUShr * ushr,HShl * shl)412 bool InstructionSimplifierVisitor::ReplaceRotateWithRor(HBinaryOperation* op,
413 HUShr* ushr,
414 HShl* shl) {
415 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr()) << op->DebugName();
416 HRor* ror =
417 new (GetGraph()->GetAllocator()) HRor(ushr->GetType(), ushr->GetLeft(), ushr->GetRight());
418 op->GetBlock()->ReplaceAndRemoveInstructionWith(op, ror);
419 if (!ushr->HasUses()) {
420 ushr->GetBlock()->RemoveInstruction(ushr);
421 }
422 if (!ushr->GetRight()->HasUses()) {
423 ushr->GetRight()->GetBlock()->RemoveInstruction(ushr->GetRight());
424 }
425 if (!shl->HasUses()) {
426 shl->GetBlock()->RemoveInstruction(shl);
427 }
428 if (!shl->GetRight()->HasUses()) {
429 shl->GetRight()->GetBlock()->RemoveInstruction(shl->GetRight());
430 }
431 RecordSimplification();
432 return true;
433 }
434
435 // Try to replace a binary operation flanked by one UShr and one Shl with a bitfield rotation.
TryReplaceWithRotate(HBinaryOperation * op)436 bool InstructionSimplifierVisitor::TryReplaceWithRotate(HBinaryOperation* op) {
437 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
438 HInstruction* left = op->GetLeft();
439 HInstruction* right = op->GetRight();
440 // If we have an UShr and a Shl (in either order).
441 if ((left->IsUShr() && right->IsShl()) || (left->IsShl() && right->IsUShr())) {
442 HUShr* ushr = left->IsUShr() ? left->AsUShr() : right->AsUShr();
443 HShl* shl = left->IsShl() ? left->AsShl() : right->AsShl();
444 DCHECK(DataType::IsIntOrLongType(ushr->GetType()));
445 if (ushr->GetType() == shl->GetType() &&
446 ushr->GetLeft() == shl->GetLeft()) {
447 if (ushr->GetRight()->IsConstant() && shl->GetRight()->IsConstant()) {
448 // Shift distances are both constant, try replacing with Ror if they
449 // add up to the register size.
450 return TryReplaceWithRotateConstantPattern(op, ushr, shl);
451 } else if (ushr->GetRight()->IsSub() || shl->GetRight()->IsSub()) {
452 // Shift distances are potentially of the form x and (reg_size - x).
453 return TryReplaceWithRotateRegisterSubPattern(op, ushr, shl);
454 } else if (ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg()) {
455 // Shift distances are potentially of the form d and -d.
456 return TryReplaceWithRotateRegisterNegPattern(op, ushr, shl);
457 }
458 }
459 }
460 return false;
461 }
462
463 // Try replacing code looking like (x >>> #rdist OP x << #ldist):
464 // UShr dst, x, #rdist
465 // Shl tmp, x, #ldist
466 // OP dst, dst, tmp
467 // or like (x >>> #rdist OP x << #-ldist):
468 // UShr dst, x, #rdist
469 // Shl tmp, x, #-ldist
470 // OP dst, dst, tmp
471 // with
472 // Ror dst, x, #rdist
TryReplaceWithRotateConstantPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)473 bool InstructionSimplifierVisitor::TryReplaceWithRotateConstantPattern(HBinaryOperation* op,
474 HUShr* ushr,
475 HShl* shl) {
476 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
477 size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
478 size_t rdist = Int64FromConstant(ushr->GetRight()->AsConstant());
479 size_t ldist = Int64FromConstant(shl->GetRight()->AsConstant());
480 if (((ldist + rdist) & (reg_bits - 1)) == 0) {
481 ReplaceRotateWithRor(op, ushr, shl);
482 return true;
483 }
484 return false;
485 }
486
487 // Replace code looking like (x >>> -d OP x << d):
488 // Neg neg, d
489 // UShr dst, x, neg
490 // Shl tmp, x, d
491 // OP dst, dst, tmp
492 // with
493 // Neg neg, d
494 // Ror dst, x, neg
495 // *** OR ***
496 // Replace code looking like (x >>> d OP x << -d):
497 // UShr dst, x, d
498 // Neg neg, d
499 // Shl tmp, x, neg
500 // OP dst, dst, tmp
501 // with
502 // Ror dst, x, d
TryReplaceWithRotateRegisterNegPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)503 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterNegPattern(HBinaryOperation* op,
504 HUShr* ushr,
505 HShl* shl) {
506 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
507 DCHECK(ushr->GetRight()->IsNeg() || shl->GetRight()->IsNeg());
508 bool neg_is_left = shl->GetRight()->IsNeg();
509 HNeg* neg = neg_is_left ? shl->GetRight()->AsNeg() : ushr->GetRight()->AsNeg();
510 // And the shift distance being negated is the distance being shifted the other way.
511 if (neg->InputAt(0) == (neg_is_left ? ushr->GetRight() : shl->GetRight())) {
512 ReplaceRotateWithRor(op, ushr, shl);
513 }
514 return false;
515 }
516
517 // Try replacing code looking like (x >>> d OP x << (#bits - d)):
518 // UShr dst, x, d
519 // Sub ld, #bits, d
520 // Shl tmp, x, ld
521 // OP dst, dst, tmp
522 // with
523 // Ror dst, x, d
524 // *** OR ***
525 // Replace code looking like (x >>> (#bits - d) OP x << d):
526 // Sub rd, #bits, d
527 // UShr dst, x, rd
528 // Shl tmp, x, d
529 // OP dst, dst, tmp
530 // with
531 // Neg neg, d
532 // Ror dst, x, neg
TryReplaceWithRotateRegisterSubPattern(HBinaryOperation * op,HUShr * ushr,HShl * shl)533 bool InstructionSimplifierVisitor::TryReplaceWithRotateRegisterSubPattern(HBinaryOperation* op,
534 HUShr* ushr,
535 HShl* shl) {
536 DCHECK(op->IsAdd() || op->IsXor() || op->IsOr());
537 DCHECK(ushr->GetRight()->IsSub() || shl->GetRight()->IsSub());
538 size_t reg_bits = DataType::Size(ushr->GetType()) * kBitsPerByte;
539 HInstruction* shl_shift = shl->GetRight();
540 HInstruction* ushr_shift = ushr->GetRight();
541 if ((shl_shift->IsSub() && IsSubRegBitsMinusOther(shl_shift->AsSub(), reg_bits, ushr_shift)) ||
542 (ushr_shift->IsSub() && IsSubRegBitsMinusOther(ushr_shift->AsSub(), reg_bits, shl_shift))) {
543 return ReplaceRotateWithRor(op, ushr, shl);
544 }
545 return false;
546 }
547
VisitNullCheck(HNullCheck * null_check)548 void InstructionSimplifierVisitor::VisitNullCheck(HNullCheck* null_check) {
549 HInstruction* obj = null_check->InputAt(0);
550 if (!obj->CanBeNull()) {
551 null_check->ReplaceWith(obj);
552 null_check->GetBlock()->RemoveInstruction(null_check);
553 if (stats_ != nullptr) {
554 stats_->RecordStat(MethodCompilationStat::kRemovedNullCheck);
555 }
556 }
557 }
558
CanEnsureNotNullAt(HInstruction * input,HInstruction * at) const559 bool InstructionSimplifierVisitor::CanEnsureNotNullAt(HInstruction* input, HInstruction* at) const {
560 if (!input->CanBeNull()) {
561 return true;
562 }
563
564 for (const HUseListNode<HInstruction*>& use : input->GetUses()) {
565 HInstruction* user = use.GetUser();
566 if (user->IsNullCheck() && user->StrictlyDominates(at)) {
567 return true;
568 }
569 }
570
571 return false;
572 }
573
574 // Returns whether doing a type test between the class of `object` against `klass` has
575 // a statically known outcome. The result of the test is stored in `outcome`.
TypeCheckHasKnownOutcome(ReferenceTypeInfo class_rti,HInstruction * object,bool * outcome)576 static bool TypeCheckHasKnownOutcome(ReferenceTypeInfo class_rti,
577 HInstruction* object,
578 /*out*/bool* outcome) {
579 DCHECK(!object->IsNullConstant()) << "Null constants should be special cased";
580 ReferenceTypeInfo obj_rti = object->GetReferenceTypeInfo();
581 ScopedObjectAccess soa(Thread::Current());
582 if (!obj_rti.IsValid()) {
583 // We run the simplifier before the reference type propagation so type info might not be
584 // available.
585 return false;
586 }
587
588 if (!class_rti.IsValid()) {
589 // Happens when the loaded class is unresolved.
590 return false;
591 }
592 DCHECK(class_rti.IsExact());
593 if (class_rti.IsSupertypeOf(obj_rti)) {
594 *outcome = true;
595 return true;
596 } else if (obj_rti.IsExact()) {
597 // The test failed at compile time so will also fail at runtime.
598 *outcome = false;
599 return true;
600 } else if (!class_rti.IsInterface()
601 && !obj_rti.IsInterface()
602 && !obj_rti.IsSupertypeOf(class_rti)) {
603 // Different type hierarchy. The test will fail.
604 *outcome = false;
605 return true;
606 }
607 return false;
608 }
609
VisitCheckCast(HCheckCast * check_cast)610 void InstructionSimplifierVisitor::VisitCheckCast(HCheckCast* check_cast) {
611 HInstruction* object = check_cast->InputAt(0);
612 if (check_cast->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck &&
613 check_cast->GetTargetClass()->NeedsAccessCheck()) {
614 // If we need to perform an access check we cannot remove the instruction.
615 return;
616 }
617
618 if (CanEnsureNotNullAt(object, check_cast)) {
619 check_cast->ClearMustDoNullCheck();
620 }
621
622 if (object->IsNullConstant()) {
623 check_cast->GetBlock()->RemoveInstruction(check_cast);
624 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
625 return;
626 }
627
628 // Historical note: The `outcome` was initialized to please Valgrind - the compiler can reorder
629 // the return value check with the `outcome` check, b/27651442.
630 bool outcome = false;
631 if (TypeCheckHasKnownOutcome(check_cast->GetTargetClassRTI(), object, &outcome)) {
632 if (outcome) {
633 check_cast->GetBlock()->RemoveInstruction(check_cast);
634 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedCheckedCast);
635 if (check_cast->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck) {
636 HLoadClass* load_class = check_cast->GetTargetClass();
637 if (!load_class->HasUses()) {
638 // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
639 // However, here we know that it cannot because the checkcast was successfull, hence
640 // the class was already loaded.
641 load_class->GetBlock()->RemoveInstruction(load_class);
642 }
643 }
644 } else {
645 // Don't do anything for exceptional cases for now. Ideally we should remove
646 // all instructions and blocks this instruction dominates.
647 }
648 }
649 }
650
VisitInstanceOf(HInstanceOf * instruction)651 void InstructionSimplifierVisitor::VisitInstanceOf(HInstanceOf* instruction) {
652 HInstruction* object = instruction->InputAt(0);
653 if (instruction->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck &&
654 instruction->GetTargetClass()->NeedsAccessCheck()) {
655 // If we need to perform an access check we cannot remove the instruction.
656 return;
657 }
658
659 bool can_be_null = true;
660 if (CanEnsureNotNullAt(object, instruction)) {
661 can_be_null = false;
662 instruction->ClearMustDoNullCheck();
663 }
664
665 HGraph* graph = GetGraph();
666 if (object->IsNullConstant()) {
667 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
668 instruction->ReplaceWith(graph->GetIntConstant(0));
669 instruction->GetBlock()->RemoveInstruction(instruction);
670 RecordSimplification();
671 return;
672 }
673
674 // Historical note: The `outcome` was initialized to please Valgrind - the compiler can reorder
675 // the return value check with the `outcome` check, b/27651442.
676 bool outcome = false;
677 if (TypeCheckHasKnownOutcome(instruction->GetTargetClassRTI(), object, &outcome)) {
678 MaybeRecordStat(stats_, MethodCompilationStat::kRemovedInstanceOf);
679 if (outcome && can_be_null) {
680 // Type test will succeed, we just need a null test.
681 HNotEqual* test = new (graph->GetAllocator()) HNotEqual(graph->GetNullConstant(), object);
682 instruction->GetBlock()->InsertInstructionBefore(test, instruction);
683 instruction->ReplaceWith(test);
684 } else {
685 // We've statically determined the result of the instanceof.
686 instruction->ReplaceWith(graph->GetIntConstant(outcome));
687 }
688 RecordSimplification();
689 instruction->GetBlock()->RemoveInstruction(instruction);
690 if (outcome && instruction->GetTypeCheckKind() != TypeCheckKind::kBitstringCheck) {
691 HLoadClass* load_class = instruction->GetTargetClass();
692 if (!load_class->HasUses()) {
693 // We cannot rely on DCE to remove the class because the `HLoadClass` thinks it can throw.
694 // However, here we know that it cannot because the instanceof check was successfull, hence
695 // the class was already loaded.
696 load_class->GetBlock()->RemoveInstruction(load_class);
697 }
698 }
699 }
700 }
701
VisitInstanceFieldSet(HInstanceFieldSet * instruction)702 void InstructionSimplifierVisitor::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
703 if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
704 && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
705 instruction->ClearValueCanBeNull();
706 }
707 }
708
VisitStaticFieldSet(HStaticFieldSet * instruction)709 void InstructionSimplifierVisitor::VisitStaticFieldSet(HStaticFieldSet* instruction) {
710 if ((instruction->GetValue()->GetType() == DataType::Type::kReference)
711 && CanEnsureNotNullAt(instruction->GetValue(), instruction)) {
712 instruction->ClearValueCanBeNull();
713 }
714 }
715
GetOppositeConditionSwapOps(ArenaAllocator * allocator,HInstruction * cond)716 static HCondition* GetOppositeConditionSwapOps(ArenaAllocator* allocator, HInstruction* cond) {
717 HInstruction *lhs = cond->InputAt(0);
718 HInstruction *rhs = cond->InputAt(1);
719 switch (cond->GetKind()) {
720 case HInstruction::kEqual:
721 return new (allocator) HEqual(rhs, lhs);
722 case HInstruction::kNotEqual:
723 return new (allocator) HNotEqual(rhs, lhs);
724 case HInstruction::kLessThan:
725 return new (allocator) HGreaterThan(rhs, lhs);
726 case HInstruction::kLessThanOrEqual:
727 return new (allocator) HGreaterThanOrEqual(rhs, lhs);
728 case HInstruction::kGreaterThan:
729 return new (allocator) HLessThan(rhs, lhs);
730 case HInstruction::kGreaterThanOrEqual:
731 return new (allocator) HLessThanOrEqual(rhs, lhs);
732 case HInstruction::kBelow:
733 return new (allocator) HAbove(rhs, lhs);
734 case HInstruction::kBelowOrEqual:
735 return new (allocator) HAboveOrEqual(rhs, lhs);
736 case HInstruction::kAbove:
737 return new (allocator) HBelow(rhs, lhs);
738 case HInstruction::kAboveOrEqual:
739 return new (allocator) HBelowOrEqual(rhs, lhs);
740 default:
741 LOG(FATAL) << "Unknown ConditionType " << cond->GetKind();
742 UNREACHABLE();
743 }
744 }
745
VisitEqual(HEqual * equal)746 void InstructionSimplifierVisitor::VisitEqual(HEqual* equal) {
747 HInstruction* input_const = equal->GetConstantRight();
748 if (input_const != nullptr) {
749 HInstruction* input_value = equal->GetLeastConstantLeft();
750 if ((input_value->GetType() == DataType::Type::kBool) && input_const->IsIntConstant()) {
751 HBasicBlock* block = equal->GetBlock();
752 // We are comparing the boolean to a constant which is of type int and can
753 // be any constant.
754 if (input_const->AsIntConstant()->IsTrue()) {
755 // Replace (bool_value == true) with bool_value
756 equal->ReplaceWith(input_value);
757 block->RemoveInstruction(equal);
758 RecordSimplification();
759 } else if (input_const->AsIntConstant()->IsFalse()) {
760 // Replace (bool_value == false) with !bool_value
761 equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, equal));
762 block->RemoveInstruction(equal);
763 RecordSimplification();
764 } else {
765 // Replace (bool_value == integer_not_zero_nor_one_constant) with false
766 equal->ReplaceWith(GetGraph()->GetIntConstant(0));
767 block->RemoveInstruction(equal);
768 RecordSimplification();
769 }
770 } else {
771 VisitCondition(equal);
772 }
773 } else {
774 VisitCondition(equal);
775 }
776 }
777
VisitNotEqual(HNotEqual * not_equal)778 void InstructionSimplifierVisitor::VisitNotEqual(HNotEqual* not_equal) {
779 HInstruction* input_const = not_equal->GetConstantRight();
780 if (input_const != nullptr) {
781 HInstruction* input_value = not_equal->GetLeastConstantLeft();
782 if ((input_value->GetType() == DataType::Type::kBool) && input_const->IsIntConstant()) {
783 HBasicBlock* block = not_equal->GetBlock();
784 // We are comparing the boolean to a constant which is of type int and can
785 // be any constant.
786 if (input_const->AsIntConstant()->IsTrue()) {
787 // Replace (bool_value != true) with !bool_value
788 not_equal->ReplaceWith(GetGraph()->InsertOppositeCondition(input_value, not_equal));
789 block->RemoveInstruction(not_equal);
790 RecordSimplification();
791 } else if (input_const->AsIntConstant()->IsFalse()) {
792 // Replace (bool_value != false) with bool_value
793 not_equal->ReplaceWith(input_value);
794 block->RemoveInstruction(not_equal);
795 RecordSimplification();
796 } else {
797 // Replace (bool_value != integer_not_zero_nor_one_constant) with true
798 not_equal->ReplaceWith(GetGraph()->GetIntConstant(1));
799 block->RemoveInstruction(not_equal);
800 RecordSimplification();
801 }
802 } else {
803 VisitCondition(not_equal);
804 }
805 } else {
806 VisitCondition(not_equal);
807 }
808 }
809
VisitBooleanNot(HBooleanNot * bool_not)810 void InstructionSimplifierVisitor::VisitBooleanNot(HBooleanNot* bool_not) {
811 HInstruction* input = bool_not->InputAt(0);
812 HInstruction* replace_with = nullptr;
813
814 if (input->IsIntConstant()) {
815 // Replace !(true/false) with false/true.
816 if (input->AsIntConstant()->IsTrue()) {
817 replace_with = GetGraph()->GetIntConstant(0);
818 } else {
819 DCHECK(input->AsIntConstant()->IsFalse()) << input->AsIntConstant()->GetValue();
820 replace_with = GetGraph()->GetIntConstant(1);
821 }
822 } else if (input->IsBooleanNot()) {
823 // Replace (!(!bool_value)) with bool_value.
824 replace_with = input->InputAt(0);
825 } else if (input->IsCondition() &&
826 // Don't change FP compares. The definition of compares involving
827 // NaNs forces the compares to be done as written by the user.
828 !DataType::IsFloatingPointType(input->InputAt(0)->GetType())) {
829 // Replace condition with its opposite.
830 replace_with = GetGraph()->InsertOppositeCondition(input->AsCondition(), bool_not);
831 }
832
833 if (replace_with != nullptr) {
834 bool_not->ReplaceWith(replace_with);
835 bool_not->GetBlock()->RemoveInstruction(bool_not);
836 RecordSimplification();
837 }
838 }
839
840 // Constructs a new ABS(x) node in the HIR.
NewIntegralAbs(ArenaAllocator * allocator,HInstruction * x,HInstruction * cursor)841 static HInstruction* NewIntegralAbs(ArenaAllocator* allocator,
842 HInstruction* x,
843 HInstruction* cursor) {
844 DataType::Type type = DataType::Kind(x->GetType());
845 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
846 HAbs* abs = new (allocator) HAbs(type, x, cursor->GetDexPc());
847 cursor->GetBlock()->InsertInstructionBefore(abs, cursor);
848 return abs;
849 }
850
851 // Constructs a new MIN/MAX(x, y) node in the HIR.
NewIntegralMinMax(ArenaAllocator * allocator,HInstruction * x,HInstruction * y,HInstruction * cursor,bool is_min)852 static HInstruction* NewIntegralMinMax(ArenaAllocator* allocator,
853 HInstruction* x,
854 HInstruction* y,
855 HInstruction* cursor,
856 bool is_min) {
857 DataType::Type type = DataType::Kind(x->GetType());
858 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
859 HBinaryOperation* minmax = nullptr;
860 if (is_min) {
861 minmax = new (allocator) HMin(type, x, y, cursor->GetDexPc());
862 } else {
863 minmax = new (allocator) HMax(type, x, y, cursor->GetDexPc());
864 }
865 cursor->GetBlock()->InsertInstructionBefore(minmax, cursor);
866 return minmax;
867 }
868
869 // Returns true if operands a and b consists of widening type conversions
870 // (either explicit or implicit) to the given to_type.
AreLowerPrecisionArgs(DataType::Type to_type,HInstruction * a,HInstruction * b)871 static bool AreLowerPrecisionArgs(DataType::Type to_type, HInstruction* a, HInstruction* b) {
872 if (a->IsTypeConversion() && a->GetType() == to_type) {
873 a = a->InputAt(0);
874 }
875 if (b->IsTypeConversion() && b->GetType() == to_type) {
876 b = b->InputAt(0);
877 }
878 DataType::Type type1 = a->GetType();
879 DataType::Type type2 = b->GetType();
880 return (type1 == DataType::Type::kUint8 && type2 == DataType::Type::kUint8) ||
881 (type1 == DataType::Type::kInt8 && type2 == DataType::Type::kInt8) ||
882 (type1 == DataType::Type::kInt16 && type2 == DataType::Type::kInt16) ||
883 (type1 == DataType::Type::kUint16 && type2 == DataType::Type::kUint16) ||
884 (type1 == DataType::Type::kInt32 && type2 == DataType::Type::kInt32 &&
885 to_type == DataType::Type::kInt64);
886 }
887
888 // Returns an acceptable substitution for "a" on the select
889 // construct "a <cmp> b ? c : .." during MIN/MAX recognition.
AllowInMinMax(IfCondition cmp,HInstruction * a,HInstruction * b,HInstruction * c)890 static HInstruction* AllowInMinMax(IfCondition cmp,
891 HInstruction* a,
892 HInstruction* b,
893 HInstruction* c) {
894 int64_t value = 0;
895 if (IsInt64AndGet(b, /*out*/ &value) &&
896 (((cmp == kCondLT || cmp == kCondLE) && c->IsMax()) ||
897 ((cmp == kCondGT || cmp == kCondGE) && c->IsMin()))) {
898 HConstant* other = c->AsBinaryOperation()->GetConstantRight();
899 if (other != nullptr && a == c->AsBinaryOperation()->GetLeastConstantLeft()) {
900 int64_t other_value = Int64FromConstant(other);
901 bool is_max = (cmp == kCondLT || cmp == kCondLE);
902 // Allow the max for a < 100 ? max(a, -100) : ..
903 // or the min for a > -100 ? min(a, 100) : ..
904 if (is_max ? (value >= other_value) : (value <= other_value)) {
905 return c;
906 }
907 }
908 }
909 return nullptr;
910 }
911
VisitSelect(HSelect * select)912 void InstructionSimplifierVisitor::VisitSelect(HSelect* select) {
913 HInstruction* replace_with = nullptr;
914 HInstruction* condition = select->GetCondition();
915 HInstruction* true_value = select->GetTrueValue();
916 HInstruction* false_value = select->GetFalseValue();
917
918 if (condition->IsBooleanNot()) {
919 // Change ((!cond) ? x : y) to (cond ? y : x).
920 condition = condition->InputAt(0);
921 std::swap(true_value, false_value);
922 select->ReplaceInput(false_value, 0);
923 select->ReplaceInput(true_value, 1);
924 select->ReplaceInput(condition, 2);
925 RecordSimplification();
926 }
927
928 if (true_value == false_value) {
929 // Replace (cond ? x : x) with (x).
930 replace_with = true_value;
931 } else if (condition->IsIntConstant()) {
932 if (condition->AsIntConstant()->IsTrue()) {
933 // Replace (true ? x : y) with (x).
934 replace_with = true_value;
935 } else {
936 // Replace (false ? x : y) with (y).
937 DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue();
938 replace_with = false_value;
939 }
940 } else if (true_value->IsIntConstant() && false_value->IsIntConstant()) {
941 if (true_value->AsIntConstant()->IsTrue() && false_value->AsIntConstant()->IsFalse()) {
942 // Replace (cond ? true : false) with (cond).
943 replace_with = condition;
944 } else if (true_value->AsIntConstant()->IsFalse() && false_value->AsIntConstant()->IsTrue()) {
945 // Replace (cond ? false : true) with (!cond).
946 replace_with = GetGraph()->InsertOppositeCondition(condition, select);
947 }
948 } else if (condition->IsCondition()) {
949 IfCondition cmp = condition->AsCondition()->GetCondition();
950 HInstruction* a = condition->InputAt(0);
951 HInstruction* b = condition->InputAt(1);
952 DataType::Type t_type = true_value->GetType();
953 DataType::Type f_type = false_value->GetType();
954 // Here we have a <cmp> b ? true_value : false_value.
955 // Test if both values are compatible integral types (resulting MIN/MAX/ABS
956 // type will be int or long, like the condition). Replacements are general,
957 // but assume conditions prefer constants on the right.
958 if (DataType::IsIntegralType(t_type) && DataType::Kind(t_type) == DataType::Kind(f_type)) {
959 // Allow a < 100 ? max(a, -100) : ..
960 // or a > -100 ? min(a, 100) : ..
961 // to use min/max instead of a to detect nested min/max expressions.
962 HInstruction* new_a = AllowInMinMax(cmp, a, b, true_value);
963 if (new_a != nullptr) {
964 a = new_a;
965 }
966 // Try to replace typical integral MIN/MAX/ABS constructs.
967 if ((cmp == kCondLT || cmp == kCondLE || cmp == kCondGT || cmp == kCondGE) &&
968 ((a == true_value && b == false_value) ||
969 (b == true_value && a == false_value))) {
970 // Found a < b ? a : b (MIN) or a < b ? b : a (MAX)
971 // or a > b ? a : b (MAX) or a > b ? b : a (MIN).
972 bool is_min = (cmp == kCondLT || cmp == kCondLE) == (a == true_value);
973 replace_with = NewIntegralMinMax(GetGraph()->GetAllocator(), a, b, select, is_min);
974 } else if (((cmp == kCondLT || cmp == kCondLE) && true_value->IsNeg()) ||
975 ((cmp == kCondGT || cmp == kCondGE) && false_value->IsNeg())) {
976 bool negLeft = (cmp == kCondLT || cmp == kCondLE);
977 HInstruction* the_negated = negLeft ? true_value->InputAt(0) : false_value->InputAt(0);
978 HInstruction* not_negated = negLeft ? false_value : true_value;
979 if (a == the_negated && a == not_negated && IsInt64Value(b, 0)) {
980 // Found a < 0 ? -a : a
981 // or a > 0 ? a : -a
982 // which can be replaced by ABS(a).
983 replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), a, select);
984 }
985 } else if (true_value->IsSub() && false_value->IsSub()) {
986 HInstruction* true_sub1 = true_value->InputAt(0);
987 HInstruction* true_sub2 = true_value->InputAt(1);
988 HInstruction* false_sub1 = false_value->InputAt(0);
989 HInstruction* false_sub2 = false_value->InputAt(1);
990 if ((((cmp == kCondGT || cmp == kCondGE) &&
991 (a == true_sub1 && b == true_sub2 && a == false_sub2 && b == false_sub1)) ||
992 ((cmp == kCondLT || cmp == kCondLE) &&
993 (a == true_sub2 && b == true_sub1 && a == false_sub1 && b == false_sub2))) &&
994 AreLowerPrecisionArgs(t_type, a, b)) {
995 // Found a > b ? a - b : b - a
996 // or a < b ? b - a : a - b
997 // which can be replaced by ABS(a - b) for lower precision operands a, b.
998 replace_with = NewIntegralAbs(GetGraph()->GetAllocator(), true_value, select);
999 }
1000 }
1001 }
1002 }
1003
1004 if (replace_with != nullptr) {
1005 select->ReplaceWith(replace_with);
1006 select->GetBlock()->RemoveInstruction(select);
1007 RecordSimplification();
1008 }
1009 }
1010
VisitIf(HIf * instruction)1011 void InstructionSimplifierVisitor::VisitIf(HIf* instruction) {
1012 HInstruction* condition = instruction->InputAt(0);
1013 if (condition->IsBooleanNot()) {
1014 // Swap successors if input is negated.
1015 instruction->ReplaceInput(condition->InputAt(0), 0);
1016 instruction->GetBlock()->SwapSuccessors();
1017 RecordSimplification();
1018 }
1019 }
1020
VisitArrayLength(HArrayLength * instruction)1021 void InstructionSimplifierVisitor::VisitArrayLength(HArrayLength* instruction) {
1022 HInstruction* input = instruction->InputAt(0);
1023 // If the array is a NewArray with constant size, replace the array length
1024 // with the constant instruction. This helps the bounds check elimination phase.
1025 if (input->IsNewArray()) {
1026 input = input->AsNewArray()->GetLength();
1027 if (input->IsIntConstant()) {
1028 instruction->ReplaceWith(input);
1029 }
1030 }
1031 }
1032
VisitArraySet(HArraySet * instruction)1033 void InstructionSimplifierVisitor::VisitArraySet(HArraySet* instruction) {
1034 HInstruction* value = instruction->GetValue();
1035 if (value->GetType() != DataType::Type::kReference) {
1036 return;
1037 }
1038
1039 if (CanEnsureNotNullAt(value, instruction)) {
1040 instruction->ClearValueCanBeNull();
1041 }
1042
1043 if (value->IsArrayGet()) {
1044 if (value->AsArrayGet()->GetArray() == instruction->GetArray()) {
1045 // If the code is just swapping elements in the array, no need for a type check.
1046 instruction->ClearNeedsTypeCheck();
1047 return;
1048 }
1049 }
1050
1051 if (value->IsNullConstant()) {
1052 instruction->ClearNeedsTypeCheck();
1053 return;
1054 }
1055
1056 ScopedObjectAccess soa(Thread::Current());
1057 ReferenceTypeInfo array_rti = instruction->GetArray()->GetReferenceTypeInfo();
1058 ReferenceTypeInfo value_rti = value->GetReferenceTypeInfo();
1059 if (!array_rti.IsValid()) {
1060 return;
1061 }
1062
1063 if (value_rti.IsValid() && array_rti.CanArrayHold(value_rti)) {
1064 instruction->ClearNeedsTypeCheck();
1065 return;
1066 }
1067
1068 if (array_rti.IsObjectArray()) {
1069 if (array_rti.IsExact()) {
1070 instruction->ClearNeedsTypeCheck();
1071 return;
1072 }
1073 instruction->SetStaticTypeOfArrayIsObjectArray();
1074 }
1075 }
1076
IsTypeConversionLossless(DataType::Type input_type,DataType::Type result_type)1077 static bool IsTypeConversionLossless(DataType::Type input_type, DataType::Type result_type) {
1078 // Make sure all implicit conversions have been simplified and no new ones have been introduced.
1079 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
1080 << input_type << "," << result_type;
1081 // The conversion to a larger type is loss-less with the exception of two cases,
1082 // - conversion to the unsigned type Uint16, where we may lose some bits, and
1083 // - conversion from float to long, the only FP to integral conversion with smaller FP type.
1084 // For integral to FP conversions this holds because the FP mantissa is large enough.
1085 // Note: The size check excludes Uint8 as the result type.
1086 return DataType::Size(result_type) > DataType::Size(input_type) &&
1087 result_type != DataType::Type::kUint16 &&
1088 !(result_type == DataType::Type::kInt64 && input_type == DataType::Type::kFloat32);
1089 }
1090
TryReplaceFieldOrArrayGetType(HInstruction * maybe_get,DataType::Type new_type)1091 static inline bool TryReplaceFieldOrArrayGetType(HInstruction* maybe_get, DataType::Type new_type) {
1092 if (maybe_get->IsInstanceFieldGet()) {
1093 maybe_get->AsInstanceFieldGet()->SetType(new_type);
1094 return true;
1095 } else if (maybe_get->IsStaticFieldGet()) {
1096 maybe_get->AsStaticFieldGet()->SetType(new_type);
1097 return true;
1098 } else if (maybe_get->IsArrayGet() && !maybe_get->AsArrayGet()->IsStringCharAt()) {
1099 maybe_get->AsArrayGet()->SetType(new_type);
1100 return true;
1101 } else {
1102 return false;
1103 }
1104 }
1105
1106 // The type conversion is only used for storing into a field/element of the
1107 // same/narrower size.
IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion * type_conversion)1108 static bool IsTypeConversionForStoringIntoNoWiderFieldOnly(HTypeConversion* type_conversion) {
1109 if (type_conversion->HasEnvironmentUses()) {
1110 return false;
1111 }
1112 DataType::Type input_type = type_conversion->GetInputType();
1113 DataType::Type result_type = type_conversion->GetResultType();
1114 if (!DataType::IsIntegralType(input_type) ||
1115 !DataType::IsIntegralType(result_type) ||
1116 input_type == DataType::Type::kInt64 ||
1117 result_type == DataType::Type::kInt64) {
1118 // Type conversion is needed if non-integer types are involved, or 64-bit
1119 // types are involved, which may use different number of registers.
1120 return false;
1121 }
1122 if (DataType::Size(input_type) >= DataType::Size(result_type)) {
1123 // Type conversion is not necessary when storing to a field/element of the
1124 // same/smaller size.
1125 } else {
1126 // We do not handle this case here.
1127 return false;
1128 }
1129
1130 // Check if the converted value is only used for storing into heap.
1131 for (const HUseListNode<HInstruction*>& use : type_conversion->GetUses()) {
1132 HInstruction* instruction = use.GetUser();
1133 if (instruction->IsInstanceFieldSet() &&
1134 instruction->AsInstanceFieldSet()->GetFieldType() == result_type) {
1135 DCHECK_EQ(instruction->AsInstanceFieldSet()->GetValue(), type_conversion);
1136 continue;
1137 }
1138 if (instruction->IsStaticFieldSet() &&
1139 instruction->AsStaticFieldSet()->GetFieldType() == result_type) {
1140 DCHECK_EQ(instruction->AsStaticFieldSet()->GetValue(), type_conversion);
1141 continue;
1142 }
1143 if (instruction->IsArraySet() &&
1144 instruction->AsArraySet()->GetComponentType() == result_type &&
1145 // not index use.
1146 instruction->AsArraySet()->GetIndex() != type_conversion) {
1147 DCHECK_EQ(instruction->AsArraySet()->GetValue(), type_conversion);
1148 continue;
1149 }
1150 // The use is not as a store value, or the field/element type is not the
1151 // same as the result_type, keep the type conversion.
1152 return false;
1153 }
1154 // Codegen automatically handles the type conversion during the store.
1155 return true;
1156 }
1157
VisitTypeConversion(HTypeConversion * instruction)1158 void InstructionSimplifierVisitor::VisitTypeConversion(HTypeConversion* instruction) {
1159 HInstruction* input = instruction->GetInput();
1160 DataType::Type input_type = input->GetType();
1161 DataType::Type result_type = instruction->GetResultType();
1162 if (instruction->IsImplicitConversion()) {
1163 instruction->ReplaceWith(input);
1164 instruction->GetBlock()->RemoveInstruction(instruction);
1165 RecordSimplification();
1166 return;
1167 }
1168
1169 if (input->IsTypeConversion()) {
1170 HTypeConversion* input_conversion = input->AsTypeConversion();
1171 HInstruction* original_input = input_conversion->GetInput();
1172 DataType::Type original_type = original_input->GetType();
1173
1174 // When the first conversion is lossless, a direct conversion from the original type
1175 // to the final type yields the same result, even for a lossy second conversion, for
1176 // example float->double->int or int->double->float.
1177 bool is_first_conversion_lossless = IsTypeConversionLossless(original_type, input_type);
1178
1179 // For integral conversions, see if the first conversion loses only bits that the second
1180 // doesn't need, i.e. the final type is no wider than the intermediate. If so, direct
1181 // conversion yields the same result, for example long->int->short or int->char->short.
1182 bool integral_conversions_with_non_widening_second =
1183 DataType::IsIntegralType(input_type) &&
1184 DataType::IsIntegralType(original_type) &&
1185 DataType::IsIntegralType(result_type) &&
1186 DataType::Size(result_type) <= DataType::Size(input_type);
1187
1188 if (is_first_conversion_lossless || integral_conversions_with_non_widening_second) {
1189 // If the merged conversion is implicit, do the simplification unconditionally.
1190 if (DataType::IsTypeConversionImplicit(original_type, result_type)) {
1191 instruction->ReplaceWith(original_input);
1192 instruction->GetBlock()->RemoveInstruction(instruction);
1193 if (!input_conversion->HasUses()) {
1194 // Don't wait for DCE.
1195 input_conversion->GetBlock()->RemoveInstruction(input_conversion);
1196 }
1197 RecordSimplification();
1198 return;
1199 }
1200 // Otherwise simplify only if the first conversion has no other use.
1201 if (input_conversion->HasOnlyOneNonEnvironmentUse()) {
1202 input_conversion->ReplaceWith(original_input);
1203 input_conversion->GetBlock()->RemoveInstruction(input_conversion);
1204 RecordSimplification();
1205 return;
1206 }
1207 }
1208 } else if (input->IsAnd() && DataType::IsIntegralType(result_type)) {
1209 DCHECK(DataType::IsIntegralType(input_type));
1210 HAnd* input_and = input->AsAnd();
1211 HConstant* constant = input_and->GetConstantRight();
1212 if (constant != nullptr) {
1213 int64_t value = Int64FromConstant(constant);
1214 DCHECK_NE(value, -1); // "& -1" would have been optimized away in VisitAnd().
1215 size_t trailing_ones = CTZ(~static_cast<uint64_t>(value));
1216 if (trailing_ones >= kBitsPerByte * DataType::Size(result_type)) {
1217 // The `HAnd` is useless, for example in `(byte) (x & 0xff)`, get rid of it.
1218 HInstruction* original_input = input_and->GetLeastConstantLeft();
1219 if (DataType::IsTypeConversionImplicit(original_input->GetType(), result_type)) {
1220 instruction->ReplaceWith(original_input);
1221 instruction->GetBlock()->RemoveInstruction(instruction);
1222 RecordSimplification();
1223 return;
1224 } else if (input->HasOnlyOneNonEnvironmentUse()) {
1225 input_and->ReplaceWith(original_input);
1226 input_and->GetBlock()->RemoveInstruction(input_and);
1227 RecordSimplification();
1228 return;
1229 }
1230 }
1231 }
1232 } else if (input->HasOnlyOneNonEnvironmentUse() &&
1233 ((input_type == DataType::Type::kInt8 && result_type == DataType::Type::kUint8) ||
1234 (input_type == DataType::Type::kUint8 && result_type == DataType::Type::kInt8) ||
1235 (input_type == DataType::Type::kInt16 && result_type == DataType::Type::kUint16) ||
1236 (input_type == DataType::Type::kUint16 && result_type == DataType::Type::kInt16))) {
1237 // Try to modify the type of the load to `result_type` and remove the explicit type conversion.
1238 if (TryReplaceFieldOrArrayGetType(input, result_type)) {
1239 instruction->ReplaceWith(input);
1240 instruction->GetBlock()->RemoveInstruction(instruction);
1241 RecordSimplification();
1242 return;
1243 }
1244 }
1245
1246 if (IsTypeConversionForStoringIntoNoWiderFieldOnly(instruction)) {
1247 instruction->ReplaceWith(input);
1248 instruction->GetBlock()->RemoveInstruction(instruction);
1249 RecordSimplification();
1250 return;
1251 }
1252 }
1253
VisitAbs(HAbs * instruction)1254 void InstructionSimplifierVisitor::VisitAbs(HAbs* instruction) {
1255 HInstruction* input = instruction->GetInput();
1256 if (DataType::IsZeroExtension(input->GetType(), instruction->GetResultType())) {
1257 // Zero extension from narrow to wide can never set sign bit in the wider
1258 // operand, making the subsequent Abs redundant (e.g., abs(b & 0xff) for byte b).
1259 instruction->ReplaceWith(input);
1260 instruction->GetBlock()->RemoveInstruction(instruction);
1261 RecordSimplification();
1262 }
1263 }
1264
VisitAdd(HAdd * instruction)1265 void InstructionSimplifierVisitor::VisitAdd(HAdd* instruction) {
1266 HConstant* input_cst = instruction->GetConstantRight();
1267 HInstruction* input_other = instruction->GetLeastConstantLeft();
1268 bool integral_type = DataType::IsIntegralType(instruction->GetType());
1269 if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
1270 // Replace code looking like
1271 // ADD dst, src, 0
1272 // with
1273 // src
1274 // Note that we cannot optimize `x + 0.0` to `x` for floating-point. When
1275 // `x` is `-0.0`, the former expression yields `0.0`, while the later
1276 // yields `-0.0`.
1277 if (integral_type) {
1278 instruction->ReplaceWith(input_other);
1279 instruction->GetBlock()->RemoveInstruction(instruction);
1280 RecordSimplification();
1281 return;
1282 }
1283 }
1284
1285 HInstruction* left = instruction->GetLeft();
1286 HInstruction* right = instruction->GetRight();
1287 bool left_is_neg = left->IsNeg();
1288 bool right_is_neg = right->IsNeg();
1289
1290 if (left_is_neg && right_is_neg) {
1291 if (TryMoveNegOnInputsAfterBinop(instruction)) {
1292 return;
1293 }
1294 }
1295
1296 HNeg* neg = left_is_neg ? left->AsNeg() : right->AsNeg();
1297 if (left_is_neg != right_is_neg && neg->HasOnlyOneNonEnvironmentUse()) {
1298 // Replace code looking like
1299 // NEG tmp, b
1300 // ADD dst, a, tmp
1301 // with
1302 // SUB dst, a, b
1303 // We do not perform the optimization if the input negation has environment
1304 // uses or multiple non-environment uses as it could lead to worse code. In
1305 // particular, we do not want the live range of `b` to be extended if we are
1306 // not sure the initial 'NEG' instruction can be removed.
1307 HInstruction* other = left_is_neg ? right : left;
1308 HSub* sub =
1309 new(GetGraph()->GetAllocator()) HSub(instruction->GetType(), other, neg->GetInput());
1310 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, sub);
1311 RecordSimplification();
1312 neg->GetBlock()->RemoveInstruction(neg);
1313 return;
1314 }
1315
1316 if (TryReplaceWithRotate(instruction)) {
1317 return;
1318 }
1319
1320 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1321 // so no need to return.
1322 TryHandleAssociativeAndCommutativeOperation(instruction);
1323
1324 if ((left->IsSub() || right->IsSub()) &&
1325 TrySubtractionChainSimplification(instruction)) {
1326 return;
1327 }
1328
1329 if (integral_type) {
1330 // Replace code patterns looking like
1331 // SUB dst1, x, y SUB dst1, x, y
1332 // ADD dst2, dst1, y ADD dst2, y, dst1
1333 // with
1334 // SUB dst1, x, y
1335 // ADD instruction is not needed in this case, we may use
1336 // one of inputs of SUB instead.
1337 if (left->IsSub() && left->InputAt(1) == right) {
1338 instruction->ReplaceWith(left->InputAt(0));
1339 RecordSimplification();
1340 instruction->GetBlock()->RemoveInstruction(instruction);
1341 return;
1342 } else if (right->IsSub() && right->InputAt(1) == left) {
1343 instruction->ReplaceWith(right->InputAt(0));
1344 RecordSimplification();
1345 instruction->GetBlock()->RemoveInstruction(instruction);
1346 return;
1347 }
1348 }
1349 }
1350
VisitAnd(HAnd * instruction)1351 void InstructionSimplifierVisitor::VisitAnd(HAnd* instruction) {
1352 DCHECK(DataType::IsIntegralType(instruction->GetType()));
1353 HConstant* input_cst = instruction->GetConstantRight();
1354 HInstruction* input_other = instruction->GetLeastConstantLeft();
1355
1356 if (input_cst != nullptr) {
1357 int64_t value = Int64FromConstant(input_cst);
1358 if (value == -1 ||
1359 // Similar cases under zero extension.
1360 (DataType::IsUnsignedType(input_other->GetType()) &&
1361 ((DataType::MaxValueOfIntegralType(input_other->GetType()) & ~value) == 0))) {
1362 // Replace code looking like
1363 // AND dst, src, 0xFFF...FF
1364 // with
1365 // src
1366 instruction->ReplaceWith(input_other);
1367 instruction->GetBlock()->RemoveInstruction(instruction);
1368 RecordSimplification();
1369 return;
1370 }
1371 if (input_other->IsTypeConversion() &&
1372 input_other->GetType() == DataType::Type::kInt64 &&
1373 DataType::IsIntegralType(input_other->InputAt(0)->GetType()) &&
1374 IsInt<32>(value) &&
1375 input_other->HasOnlyOneNonEnvironmentUse()) {
1376 // The AND can be reordered before the TypeConversion. Replace
1377 // LongConstant cst, <32-bit-constant-sign-extended-to-64-bits>
1378 // TypeConversion<Int64> tmp, src
1379 // AND dst, tmp, cst
1380 // with
1381 // IntConstant cst, <32-bit-constant>
1382 // AND tmp, src, cst
1383 // TypeConversion<Int64> dst, tmp
1384 // This helps 32-bit targets and does not hurt 64-bit targets.
1385 // This also simplifies detection of other patterns, such as Uint8 loads.
1386 HInstruction* new_and_input = input_other->InputAt(0);
1387 // Implicit conversion Int64->Int64 would have been removed previously.
1388 DCHECK_NE(new_and_input->GetType(), DataType::Type::kInt64);
1389 HConstant* new_const = GetGraph()->GetConstant(DataType::Type::kInt32, value);
1390 HAnd* new_and =
1391 new (GetGraph()->GetAllocator()) HAnd(DataType::Type::kInt32, new_and_input, new_const);
1392 instruction->GetBlock()->InsertInstructionBefore(new_and, instruction);
1393 HTypeConversion* new_conversion =
1394 new (GetGraph()->GetAllocator()) HTypeConversion(DataType::Type::kInt64, new_and);
1395 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_conversion);
1396 input_other->GetBlock()->RemoveInstruction(input_other);
1397 RecordSimplification();
1398 // Try to process the new And now, do not wait for the next round of simplifications.
1399 instruction = new_and;
1400 input_other = new_and_input;
1401 }
1402 // Eliminate And from UShr+And if the And-mask contains all the bits that
1403 // can be non-zero after UShr. Transform Shr+And to UShr if the And-mask
1404 // precisely clears the shifted-in sign bits.
1405 if ((input_other->IsUShr() || input_other->IsShr()) && input_other->InputAt(1)->IsConstant()) {
1406 size_t reg_bits = (instruction->GetResultType() == DataType::Type::kInt64) ? 64 : 32;
1407 size_t shift = Int64FromConstant(input_other->InputAt(1)->AsConstant()) & (reg_bits - 1);
1408 size_t num_tail_bits_set = CTZ(value + 1);
1409 if ((num_tail_bits_set >= reg_bits - shift) && input_other->IsUShr()) {
1410 // This AND clears only bits known to be clear, for example "(x >>> 24) & 0xff".
1411 instruction->ReplaceWith(input_other);
1412 instruction->GetBlock()->RemoveInstruction(instruction);
1413 RecordSimplification();
1414 return;
1415 } else if ((num_tail_bits_set == reg_bits - shift) && IsPowerOfTwo(value + 1) &&
1416 input_other->HasOnlyOneNonEnvironmentUse()) {
1417 DCHECK(input_other->IsShr()); // For UShr, we would have taken the branch above.
1418 // Replace SHR+AND with USHR, for example "(x >> 24) & 0xff" -> "x >>> 24".
1419 HUShr* ushr = new (GetGraph()->GetAllocator()) HUShr(instruction->GetType(),
1420 input_other->InputAt(0),
1421 input_other->InputAt(1),
1422 input_other->GetDexPc());
1423 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, ushr);
1424 input_other->GetBlock()->RemoveInstruction(input_other);
1425 RecordSimplification();
1426 return;
1427 }
1428 }
1429 if ((value == 0xff || value == 0xffff) && instruction->GetType() != DataType::Type::kInt64) {
1430 // Transform AND to a type conversion to Uint8/Uint16. If `input_other` is a field
1431 // or array Get with only a single use, short-circuit the subsequent simplification
1432 // of the Get+TypeConversion and change the Get's type to `new_type` instead.
1433 DataType::Type new_type = (value == 0xff) ? DataType::Type::kUint8 : DataType::Type::kUint16;
1434 DataType::Type find_type = (value == 0xff) ? DataType::Type::kInt8 : DataType::Type::kInt16;
1435 if (input_other->GetType() == find_type &&
1436 input_other->HasOnlyOneNonEnvironmentUse() &&
1437 TryReplaceFieldOrArrayGetType(input_other, new_type)) {
1438 instruction->ReplaceWith(input_other);
1439 instruction->GetBlock()->RemoveInstruction(instruction);
1440 } else if (DataType::IsTypeConversionImplicit(input_other->GetType(), new_type)) {
1441 instruction->ReplaceWith(input_other);
1442 instruction->GetBlock()->RemoveInstruction(instruction);
1443 } else {
1444 HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion(
1445 new_type, input_other, instruction->GetDexPc());
1446 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, type_conversion);
1447 }
1448 RecordSimplification();
1449 return;
1450 }
1451 }
1452
1453 // We assume that GVN has run before, so we only perform a pointer comparison.
1454 // If for some reason the values are equal but the pointers are different, we
1455 // are still correct and only miss an optimization opportunity.
1456 if (instruction->GetLeft() == instruction->GetRight()) {
1457 // Replace code looking like
1458 // AND dst, src, src
1459 // with
1460 // src
1461 instruction->ReplaceWith(instruction->GetLeft());
1462 instruction->GetBlock()->RemoveInstruction(instruction);
1463 RecordSimplification();
1464 return;
1465 }
1466
1467 if (TryDeMorganNegationFactoring(instruction)) {
1468 return;
1469 }
1470
1471 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1472 // so no need to return.
1473 TryHandleAssociativeAndCommutativeOperation(instruction);
1474 }
1475
VisitGreaterThan(HGreaterThan * condition)1476 void InstructionSimplifierVisitor::VisitGreaterThan(HGreaterThan* condition) {
1477 VisitCondition(condition);
1478 }
1479
VisitGreaterThanOrEqual(HGreaterThanOrEqual * condition)1480 void InstructionSimplifierVisitor::VisitGreaterThanOrEqual(HGreaterThanOrEqual* condition) {
1481 VisitCondition(condition);
1482 }
1483
VisitLessThan(HLessThan * condition)1484 void InstructionSimplifierVisitor::VisitLessThan(HLessThan* condition) {
1485 VisitCondition(condition);
1486 }
1487
VisitLessThanOrEqual(HLessThanOrEqual * condition)1488 void InstructionSimplifierVisitor::VisitLessThanOrEqual(HLessThanOrEqual* condition) {
1489 VisitCondition(condition);
1490 }
1491
VisitBelow(HBelow * condition)1492 void InstructionSimplifierVisitor::VisitBelow(HBelow* condition) {
1493 VisitCondition(condition);
1494 }
1495
VisitBelowOrEqual(HBelowOrEqual * condition)1496 void InstructionSimplifierVisitor::VisitBelowOrEqual(HBelowOrEqual* condition) {
1497 VisitCondition(condition);
1498 }
1499
VisitAbove(HAbove * condition)1500 void InstructionSimplifierVisitor::VisitAbove(HAbove* condition) {
1501 VisitCondition(condition);
1502 }
1503
VisitAboveOrEqual(HAboveOrEqual * condition)1504 void InstructionSimplifierVisitor::VisitAboveOrEqual(HAboveOrEqual* condition) {
1505 VisitCondition(condition);
1506 }
1507
1508 // Recognize the following pattern:
1509 // obj.getClass() ==/!= Foo.class
1510 // And replace it with a constant value if the type of `obj` is statically known.
RecognizeAndSimplifyClassCheck(HCondition * condition)1511 static bool RecognizeAndSimplifyClassCheck(HCondition* condition) {
1512 HInstruction* input_one = condition->InputAt(0);
1513 HInstruction* input_two = condition->InputAt(1);
1514 HLoadClass* load_class = input_one->IsLoadClass()
1515 ? input_one->AsLoadClass()
1516 : input_two->AsLoadClass();
1517 if (load_class == nullptr) {
1518 return false;
1519 }
1520
1521 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
1522 if (!class_rti.IsValid()) {
1523 // Unresolved class.
1524 return false;
1525 }
1526
1527 HInstanceFieldGet* field_get = (load_class == input_one)
1528 ? input_two->AsInstanceFieldGet()
1529 : input_one->AsInstanceFieldGet();
1530 if (field_get == nullptr) {
1531 return false;
1532 }
1533
1534 HInstruction* receiver = field_get->InputAt(0);
1535 ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
1536 if (!receiver_type.IsExact()) {
1537 return false;
1538 }
1539
1540 {
1541 ScopedObjectAccess soa(Thread::Current());
1542 ArtField* field = GetClassRoot<mirror::Object>()->GetInstanceField(0);
1543 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
1544 if (field_get->GetFieldInfo().GetField() != field) {
1545 return false;
1546 }
1547
1548 // We can replace the compare.
1549 int value = 0;
1550 if (receiver_type.IsEqual(class_rti)) {
1551 value = condition->IsEqual() ? 1 : 0;
1552 } else {
1553 value = condition->IsNotEqual() ? 1 : 0;
1554 }
1555 condition->ReplaceWith(condition->GetBlock()->GetGraph()->GetIntConstant(value));
1556 return true;
1557 }
1558 }
1559
VisitCondition(HCondition * condition)1560 void InstructionSimplifierVisitor::VisitCondition(HCondition* condition) {
1561 if (condition->IsEqual() || condition->IsNotEqual()) {
1562 if (RecognizeAndSimplifyClassCheck(condition)) {
1563 return;
1564 }
1565 }
1566
1567 // Reverse condition if left is constant. Our code generators prefer constant
1568 // on the right hand side.
1569 if (condition->GetLeft()->IsConstant() && !condition->GetRight()->IsConstant()) {
1570 HBasicBlock* block = condition->GetBlock();
1571 HCondition* replacement =
1572 GetOppositeConditionSwapOps(block->GetGraph()->GetAllocator(), condition);
1573 // If it is a fp we must set the opposite bias.
1574 if (replacement != nullptr) {
1575 if (condition->IsLtBias()) {
1576 replacement->SetBias(ComparisonBias::kGtBias);
1577 } else if (condition->IsGtBias()) {
1578 replacement->SetBias(ComparisonBias::kLtBias);
1579 }
1580 block->ReplaceAndRemoveInstructionWith(condition, replacement);
1581 RecordSimplification();
1582
1583 condition = replacement;
1584 }
1585 }
1586
1587 HInstruction* left = condition->GetLeft();
1588 HInstruction* right = condition->GetRight();
1589
1590 // Try to fold an HCompare into this HCondition.
1591
1592 // We can only replace an HCondition which compares a Compare to 0.
1593 // Both 'dx' and 'jack' generate a compare to 0 when compiling a
1594 // condition with a long, float or double comparison as input.
1595 if (!left->IsCompare() || !right->IsConstant() || right->AsIntConstant()->GetValue() != 0) {
1596 // Conversion is not possible.
1597 return;
1598 }
1599
1600 // Is the Compare only used for this purpose?
1601 if (!left->GetUses().HasExactlyOneElement()) {
1602 // Someone else also wants the result of the compare.
1603 return;
1604 }
1605
1606 if (!left->GetEnvUses().empty()) {
1607 // There is a reference to the compare result in an environment. Do we really need it?
1608 if (GetGraph()->IsDebuggable()) {
1609 return;
1610 }
1611
1612 // We have to ensure that there are no deopt points in the sequence.
1613 if (left->HasAnyEnvironmentUseBefore(condition)) {
1614 return;
1615 }
1616 }
1617
1618 // Clean up any environment uses from the HCompare, if any.
1619 left->RemoveEnvironmentUsers();
1620
1621 // We have decided to fold the HCompare into the HCondition. Transfer the information.
1622 condition->SetBias(left->AsCompare()->GetBias());
1623
1624 // Replace the operands of the HCondition.
1625 condition->ReplaceInput(left->InputAt(0), 0);
1626 condition->ReplaceInput(left->InputAt(1), 1);
1627
1628 // Remove the HCompare.
1629 left->GetBlock()->RemoveInstruction(left);
1630
1631 RecordSimplification();
1632 }
1633
1634 // Return whether x / divisor == x * (1.0f / divisor), for every float x.
CanDivideByReciprocalMultiplyFloat(int32_t divisor)1635 static constexpr bool CanDivideByReciprocalMultiplyFloat(int32_t divisor) {
1636 // True, if the most significant bits of divisor are 0.
1637 return ((divisor & 0x7fffff) == 0);
1638 }
1639
1640 // Return whether x / divisor == x * (1.0 / divisor), for every double x.
CanDivideByReciprocalMultiplyDouble(int64_t divisor)1641 static constexpr bool CanDivideByReciprocalMultiplyDouble(int64_t divisor) {
1642 // True, if the most significant bits of divisor are 0.
1643 return ((divisor & ((UINT64_C(1) << 52) - 1)) == 0);
1644 }
1645
VisitDiv(HDiv * instruction)1646 void InstructionSimplifierVisitor::VisitDiv(HDiv* instruction) {
1647 HConstant* input_cst = instruction->GetConstantRight();
1648 HInstruction* input_other = instruction->GetLeastConstantLeft();
1649 DataType::Type type = instruction->GetType();
1650
1651 if ((input_cst != nullptr) && input_cst->IsOne()) {
1652 // Replace code looking like
1653 // DIV dst, src, 1
1654 // with
1655 // src
1656 instruction->ReplaceWith(input_other);
1657 instruction->GetBlock()->RemoveInstruction(instruction);
1658 RecordSimplification();
1659 return;
1660 }
1661
1662 if ((input_cst != nullptr) && input_cst->IsMinusOne()) {
1663 // Replace code looking like
1664 // DIV dst, src, -1
1665 // with
1666 // NEG dst, src
1667 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1668 instruction, new (GetGraph()->GetAllocator()) HNeg(type, input_other));
1669 RecordSimplification();
1670 return;
1671 }
1672
1673 if ((input_cst != nullptr) && DataType::IsFloatingPointType(type)) {
1674 // Try replacing code looking like
1675 // DIV dst, src, constant
1676 // with
1677 // MUL dst, src, 1 / constant
1678 HConstant* reciprocal = nullptr;
1679 if (type == DataType::Type::kFloat64) {
1680 double value = input_cst->AsDoubleConstant()->GetValue();
1681 if (CanDivideByReciprocalMultiplyDouble(bit_cast<int64_t, double>(value))) {
1682 reciprocal = GetGraph()->GetDoubleConstant(1.0 / value);
1683 }
1684 } else {
1685 DCHECK_EQ(type, DataType::Type::kFloat32);
1686 float value = input_cst->AsFloatConstant()->GetValue();
1687 if (CanDivideByReciprocalMultiplyFloat(bit_cast<int32_t, float>(value))) {
1688 reciprocal = GetGraph()->GetFloatConstant(1.0f / value);
1689 }
1690 }
1691
1692 if (reciprocal != nullptr) {
1693 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(
1694 instruction, new (GetGraph()->GetAllocator()) HMul(type, input_other, reciprocal));
1695 RecordSimplification();
1696 return;
1697 }
1698 }
1699 }
1700
VisitMul(HMul * instruction)1701 void InstructionSimplifierVisitor::VisitMul(HMul* instruction) {
1702 HConstant* input_cst = instruction->GetConstantRight();
1703 HInstruction* input_other = instruction->GetLeastConstantLeft();
1704 DataType::Type type = instruction->GetType();
1705 HBasicBlock* block = instruction->GetBlock();
1706 ArenaAllocator* allocator = GetGraph()->GetAllocator();
1707
1708 if (input_cst == nullptr) {
1709 return;
1710 }
1711
1712 if (input_cst->IsOne()) {
1713 // Replace code looking like
1714 // MUL dst, src, 1
1715 // with
1716 // src
1717 instruction->ReplaceWith(input_other);
1718 instruction->GetBlock()->RemoveInstruction(instruction);
1719 RecordSimplification();
1720 return;
1721 }
1722
1723 if (input_cst->IsMinusOne() &&
1724 (DataType::IsFloatingPointType(type) || DataType::IsIntOrLongType(type))) {
1725 // Replace code looking like
1726 // MUL dst, src, -1
1727 // with
1728 // NEG dst, src
1729 HNeg* neg = new (allocator) HNeg(type, input_other);
1730 block->ReplaceAndRemoveInstructionWith(instruction, neg);
1731 RecordSimplification();
1732 return;
1733 }
1734
1735 if (DataType::IsFloatingPointType(type) &&
1736 ((input_cst->IsFloatConstant() && input_cst->AsFloatConstant()->GetValue() == 2.0f) ||
1737 (input_cst->IsDoubleConstant() && input_cst->AsDoubleConstant()->GetValue() == 2.0))) {
1738 // Replace code looking like
1739 // FP_MUL dst, src, 2.0
1740 // with
1741 // FP_ADD dst, src, src
1742 // The 'int' and 'long' cases are handled below.
1743 block->ReplaceAndRemoveInstructionWith(instruction,
1744 new (allocator) HAdd(type, input_other, input_other));
1745 RecordSimplification();
1746 return;
1747 }
1748
1749 if (DataType::IsIntOrLongType(type)) {
1750 int64_t factor = Int64FromConstant(input_cst);
1751 // Even though constant propagation also takes care of the zero case, other
1752 // optimizations can lead to having a zero multiplication.
1753 if (factor == 0) {
1754 // Replace code looking like
1755 // MUL dst, src, 0
1756 // with
1757 // 0
1758 instruction->ReplaceWith(input_cst);
1759 instruction->GetBlock()->RemoveInstruction(instruction);
1760 RecordSimplification();
1761 return;
1762 } else if (IsPowerOfTwo(factor)) {
1763 // Replace code looking like
1764 // MUL dst, src, pow_of_2
1765 // with
1766 // SHL dst, src, log2(pow_of_2)
1767 HIntConstant* shift = GetGraph()->GetIntConstant(WhichPowerOf2(factor));
1768 HShl* shl = new (allocator) HShl(type, input_other, shift);
1769 block->ReplaceAndRemoveInstructionWith(instruction, shl);
1770 RecordSimplification();
1771 return;
1772 } else if (IsPowerOfTwo(factor - 1)) {
1773 // Transform code looking like
1774 // MUL dst, src, (2^n + 1)
1775 // into
1776 // SHL tmp, src, n
1777 // ADD dst, src, tmp
1778 HShl* shl = new (allocator) HShl(type,
1779 input_other,
1780 GetGraph()->GetIntConstant(WhichPowerOf2(factor - 1)));
1781 HAdd* add = new (allocator) HAdd(type, input_other, shl);
1782
1783 block->InsertInstructionBefore(shl, instruction);
1784 block->ReplaceAndRemoveInstructionWith(instruction, add);
1785 RecordSimplification();
1786 return;
1787 } else if (IsPowerOfTwo(factor + 1)) {
1788 // Transform code looking like
1789 // MUL dst, src, (2^n - 1)
1790 // into
1791 // SHL tmp, src, n
1792 // SUB dst, tmp, src
1793 HShl* shl = new (allocator) HShl(type,
1794 input_other,
1795 GetGraph()->GetIntConstant(WhichPowerOf2(factor + 1)));
1796 HSub* sub = new (allocator) HSub(type, shl, input_other);
1797
1798 block->InsertInstructionBefore(shl, instruction);
1799 block->ReplaceAndRemoveInstructionWith(instruction, sub);
1800 RecordSimplification();
1801 return;
1802 }
1803 }
1804
1805 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1806 // so no need to return.
1807 TryHandleAssociativeAndCommutativeOperation(instruction);
1808 }
1809
VisitNeg(HNeg * instruction)1810 void InstructionSimplifierVisitor::VisitNeg(HNeg* instruction) {
1811 HInstruction* input = instruction->GetInput();
1812 if (input->IsNeg()) {
1813 // Replace code looking like
1814 // NEG tmp, src
1815 // NEG dst, tmp
1816 // with
1817 // src
1818 HNeg* previous_neg = input->AsNeg();
1819 instruction->ReplaceWith(previous_neg->GetInput());
1820 instruction->GetBlock()->RemoveInstruction(instruction);
1821 // We perform the optimization even if the input negation has environment
1822 // uses since it allows removing the current instruction. But we only delete
1823 // the input negation only if it is does not have any uses left.
1824 if (!previous_neg->HasUses()) {
1825 previous_neg->GetBlock()->RemoveInstruction(previous_neg);
1826 }
1827 RecordSimplification();
1828 return;
1829 }
1830
1831 if (input->IsSub() && input->HasOnlyOneNonEnvironmentUse() &&
1832 !DataType::IsFloatingPointType(input->GetType())) {
1833 // Replace code looking like
1834 // SUB tmp, a, b
1835 // NEG dst, tmp
1836 // with
1837 // SUB dst, b, a
1838 // We do not perform the optimization if the input subtraction has
1839 // environment uses or multiple non-environment uses as it could lead to
1840 // worse code. In particular, we do not want the live ranges of `a` and `b`
1841 // to be extended if we are not sure the initial 'SUB' instruction can be
1842 // removed.
1843 // We do not perform optimization for fp because we could lose the sign of zero.
1844 HSub* sub = input->AsSub();
1845 HSub* new_sub = new (GetGraph()->GetAllocator()) HSub(
1846 instruction->GetType(), sub->GetRight(), sub->GetLeft());
1847 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, new_sub);
1848 if (!sub->HasUses()) {
1849 sub->GetBlock()->RemoveInstruction(sub);
1850 }
1851 RecordSimplification();
1852 }
1853 }
1854
VisitNot(HNot * instruction)1855 void InstructionSimplifierVisitor::VisitNot(HNot* instruction) {
1856 HInstruction* input = instruction->GetInput();
1857 if (input->IsNot()) {
1858 // Replace code looking like
1859 // NOT tmp, src
1860 // NOT dst, tmp
1861 // with
1862 // src
1863 // We perform the optimization even if the input negation has environment
1864 // uses since it allows removing the current instruction. But we only delete
1865 // the input negation only if it is does not have any uses left.
1866 HNot* previous_not = input->AsNot();
1867 instruction->ReplaceWith(previous_not->GetInput());
1868 instruction->GetBlock()->RemoveInstruction(instruction);
1869 if (!previous_not->HasUses()) {
1870 previous_not->GetBlock()->RemoveInstruction(previous_not);
1871 }
1872 RecordSimplification();
1873 }
1874 }
1875
VisitOr(HOr * instruction)1876 void InstructionSimplifierVisitor::VisitOr(HOr* instruction) {
1877 HConstant* input_cst = instruction->GetConstantRight();
1878 HInstruction* input_other = instruction->GetLeastConstantLeft();
1879
1880 if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
1881 // Replace code looking like
1882 // OR dst, src, 0
1883 // with
1884 // src
1885 instruction->ReplaceWith(input_other);
1886 instruction->GetBlock()->RemoveInstruction(instruction);
1887 RecordSimplification();
1888 return;
1889 }
1890
1891 // We assume that GVN has run before, so we only perform a pointer comparison.
1892 // If for some reason the values are equal but the pointers are different, we
1893 // are still correct and only miss an optimization opportunity.
1894 if (instruction->GetLeft() == instruction->GetRight()) {
1895 // Replace code looking like
1896 // OR dst, src, src
1897 // with
1898 // src
1899 instruction->ReplaceWith(instruction->GetLeft());
1900 instruction->GetBlock()->RemoveInstruction(instruction);
1901 RecordSimplification();
1902 return;
1903 }
1904
1905 if (TryDeMorganNegationFactoring(instruction)) return;
1906
1907 if (TryReplaceWithRotate(instruction)) {
1908 return;
1909 }
1910
1911 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
1912 // so no need to return.
1913 TryHandleAssociativeAndCommutativeOperation(instruction);
1914 }
1915
VisitShl(HShl * instruction)1916 void InstructionSimplifierVisitor::VisitShl(HShl* instruction) {
1917 VisitShift(instruction);
1918 }
1919
VisitShr(HShr * instruction)1920 void InstructionSimplifierVisitor::VisitShr(HShr* instruction) {
1921 VisitShift(instruction);
1922 }
1923
VisitSub(HSub * instruction)1924 void InstructionSimplifierVisitor::VisitSub(HSub* instruction) {
1925 HConstant* input_cst = instruction->GetConstantRight();
1926 HInstruction* input_other = instruction->GetLeastConstantLeft();
1927
1928 DataType::Type type = instruction->GetType();
1929 if (DataType::IsFloatingPointType(type)) {
1930 return;
1931 }
1932
1933 if ((input_cst != nullptr) && input_cst->IsArithmeticZero()) {
1934 // Replace code looking like
1935 // SUB dst, src, 0
1936 // with
1937 // src
1938 // Note that we cannot optimize `x - 0.0` to `x` for floating-point. When
1939 // `x` is `-0.0`, the former expression yields `0.0`, while the later
1940 // yields `-0.0`.
1941 instruction->ReplaceWith(input_other);
1942 instruction->GetBlock()->RemoveInstruction(instruction);
1943 RecordSimplification();
1944 return;
1945 }
1946
1947 HBasicBlock* block = instruction->GetBlock();
1948 ArenaAllocator* allocator = GetGraph()->GetAllocator();
1949
1950 HInstruction* left = instruction->GetLeft();
1951 HInstruction* right = instruction->GetRight();
1952 if (left->IsConstant()) {
1953 if (Int64FromConstant(left->AsConstant()) == 0) {
1954 // Replace code looking like
1955 // SUB dst, 0, src
1956 // with
1957 // NEG dst, src
1958 // Note that we cannot optimize `0.0 - x` to `-x` for floating-point. When
1959 // `x` is `0.0`, the former expression yields `0.0`, while the later
1960 // yields `-0.0`.
1961 HNeg* neg = new (allocator) HNeg(type, right);
1962 block->ReplaceAndRemoveInstructionWith(instruction, neg);
1963 RecordSimplification();
1964 return;
1965 }
1966 }
1967
1968 if (left->IsNeg() && right->IsNeg()) {
1969 if (TryMoveNegOnInputsAfterBinop(instruction)) {
1970 return;
1971 }
1972 }
1973
1974 if (right->IsNeg() && right->HasOnlyOneNonEnvironmentUse()) {
1975 // Replace code looking like
1976 // NEG tmp, b
1977 // SUB dst, a, tmp
1978 // with
1979 // ADD dst, a, b
1980 HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left, right->AsNeg()->GetInput());
1981 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, add);
1982 RecordSimplification();
1983 right->GetBlock()->RemoveInstruction(right);
1984 return;
1985 }
1986
1987 if (left->IsNeg() && left->HasOnlyOneNonEnvironmentUse()) {
1988 // Replace code looking like
1989 // NEG tmp, a
1990 // SUB dst, tmp, b
1991 // with
1992 // ADD tmp, a, b
1993 // NEG dst, tmp
1994 // The second version is not intrinsically better, but enables more
1995 // transformations.
1996 HAdd* add = new(GetGraph()->GetAllocator()) HAdd(type, left->AsNeg()->GetInput(), right);
1997 instruction->GetBlock()->InsertInstructionBefore(add, instruction);
1998 HNeg* neg = new (GetGraph()->GetAllocator()) HNeg(instruction->GetType(), add);
1999 instruction->GetBlock()->InsertInstructionBefore(neg, instruction);
2000 instruction->ReplaceWith(neg);
2001 instruction->GetBlock()->RemoveInstruction(instruction);
2002 RecordSimplification();
2003 left->GetBlock()->RemoveInstruction(left);
2004 return;
2005 }
2006
2007 if (TrySubtractionChainSimplification(instruction)) {
2008 return;
2009 }
2010
2011 if (left->IsAdd()) {
2012 // Replace code patterns looking like
2013 // ADD dst1, x, y ADD dst1, x, y
2014 // SUB dst2, dst1, y SUB dst2, dst1, x
2015 // with
2016 // ADD dst1, x, y
2017 // SUB instruction is not needed in this case, we may use
2018 // one of inputs of ADD instead.
2019 // It is applicable to integral types only.
2020 DCHECK(DataType::IsIntegralType(type));
2021 if (left->InputAt(1) == right) {
2022 instruction->ReplaceWith(left->InputAt(0));
2023 RecordSimplification();
2024 instruction->GetBlock()->RemoveInstruction(instruction);
2025 return;
2026 } else if (left->InputAt(0) == right) {
2027 instruction->ReplaceWith(left->InputAt(1));
2028 RecordSimplification();
2029 instruction->GetBlock()->RemoveInstruction(instruction);
2030 return;
2031 }
2032 }
2033 }
2034
VisitUShr(HUShr * instruction)2035 void InstructionSimplifierVisitor::VisitUShr(HUShr* instruction) {
2036 VisitShift(instruction);
2037 }
2038
VisitXor(HXor * instruction)2039 void InstructionSimplifierVisitor::VisitXor(HXor* instruction) {
2040 HConstant* input_cst = instruction->GetConstantRight();
2041 HInstruction* input_other = instruction->GetLeastConstantLeft();
2042
2043 if ((input_cst != nullptr) && input_cst->IsZeroBitPattern()) {
2044 // Replace code looking like
2045 // XOR dst, src, 0
2046 // with
2047 // src
2048 instruction->ReplaceWith(input_other);
2049 instruction->GetBlock()->RemoveInstruction(instruction);
2050 RecordSimplification();
2051 return;
2052 }
2053
2054 if ((input_cst != nullptr) && input_cst->IsOne()
2055 && input_other->GetType() == DataType::Type::kBool) {
2056 // Replace code looking like
2057 // XOR dst, src, 1
2058 // with
2059 // BOOLEAN_NOT dst, src
2060 HBooleanNot* boolean_not = new (GetGraph()->GetAllocator()) HBooleanNot(input_other);
2061 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, boolean_not);
2062 RecordSimplification();
2063 return;
2064 }
2065
2066 if ((input_cst != nullptr) && AreAllBitsSet(input_cst)) {
2067 // Replace code looking like
2068 // XOR dst, src, 0xFFF...FF
2069 // with
2070 // NOT dst, src
2071 HNot* bitwise_not = new (GetGraph()->GetAllocator()) HNot(instruction->GetType(), input_other);
2072 instruction->GetBlock()->ReplaceAndRemoveInstructionWith(instruction, bitwise_not);
2073 RecordSimplification();
2074 return;
2075 }
2076
2077 HInstruction* left = instruction->GetLeft();
2078 HInstruction* right = instruction->GetRight();
2079 if (((left->IsNot() && right->IsNot()) ||
2080 (left->IsBooleanNot() && right->IsBooleanNot())) &&
2081 left->HasOnlyOneNonEnvironmentUse() &&
2082 right->HasOnlyOneNonEnvironmentUse()) {
2083 // Replace code looking like
2084 // NOT nota, a
2085 // NOT notb, b
2086 // XOR dst, nota, notb
2087 // with
2088 // XOR dst, a, b
2089 instruction->ReplaceInput(left->InputAt(0), 0);
2090 instruction->ReplaceInput(right->InputAt(0), 1);
2091 left->GetBlock()->RemoveInstruction(left);
2092 right->GetBlock()->RemoveInstruction(right);
2093 RecordSimplification();
2094 return;
2095 }
2096
2097 if (TryReplaceWithRotate(instruction)) {
2098 return;
2099 }
2100
2101 // TryHandleAssociativeAndCommutativeOperation() does not remove its input,
2102 // so no need to return.
2103 TryHandleAssociativeAndCommutativeOperation(instruction);
2104 }
2105
SimplifyStringEquals(HInvoke * instruction)2106 void InstructionSimplifierVisitor::SimplifyStringEquals(HInvoke* instruction) {
2107 HInstruction* argument = instruction->InputAt(1);
2108 HInstruction* receiver = instruction->InputAt(0);
2109 if (receiver == argument) {
2110 // Because String.equals is an instance call, the receiver is
2111 // a null check if we don't know it's null. The argument however, will
2112 // be the actual object. So we cannot end up in a situation where both
2113 // are equal but could be null.
2114 DCHECK(CanEnsureNotNullAt(argument, instruction));
2115 instruction->ReplaceWith(GetGraph()->GetIntConstant(1));
2116 instruction->GetBlock()->RemoveInstruction(instruction);
2117 } else {
2118 StringEqualsOptimizations optimizations(instruction);
2119 if (CanEnsureNotNullAt(argument, instruction)) {
2120 optimizations.SetArgumentNotNull();
2121 }
2122 ScopedObjectAccess soa(Thread::Current());
2123 ReferenceTypeInfo argument_rti = argument->GetReferenceTypeInfo();
2124 if (argument_rti.IsValid() && argument_rti.IsStringClass()) {
2125 optimizations.SetArgumentIsString();
2126 }
2127 }
2128 }
2129
SimplifyRotate(HInvoke * invoke,bool is_left,DataType::Type type)2130 void InstructionSimplifierVisitor::SimplifyRotate(HInvoke* invoke,
2131 bool is_left,
2132 DataType::Type type) {
2133 DCHECK(invoke->IsInvokeStaticOrDirect());
2134 DCHECK_EQ(invoke->GetInvokeType(), InvokeType::kStatic);
2135 HInstruction* value = invoke->InputAt(0);
2136 HInstruction* distance = invoke->InputAt(1);
2137 // Replace the invoke with an HRor.
2138 if (is_left) {
2139 // Unconditionally set the type of the negated distance to `int`,
2140 // as shift and rotate operations expect a 32-bit (or narrower)
2141 // value for their distance input.
2142 distance = new (GetGraph()->GetAllocator()) HNeg(DataType::Type::kInt32, distance);
2143 invoke->GetBlock()->InsertInstructionBefore(distance, invoke);
2144 }
2145 HRor* ror = new (GetGraph()->GetAllocator()) HRor(type, value, distance);
2146 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, ror);
2147 // Remove ClinitCheck and LoadClass, if possible.
2148 HInstruction* clinit = invoke->GetInputs().back();
2149 if (clinit->IsClinitCheck() && !clinit->HasUses()) {
2150 clinit->GetBlock()->RemoveInstruction(clinit);
2151 HInstruction* ldclass = clinit->InputAt(0);
2152 if (ldclass->IsLoadClass() && !ldclass->HasUses()) {
2153 ldclass->GetBlock()->RemoveInstruction(ldclass);
2154 }
2155 }
2156 }
2157
IsArrayLengthOf(HInstruction * potential_length,HInstruction * potential_array)2158 static bool IsArrayLengthOf(HInstruction* potential_length, HInstruction* potential_array) {
2159 if (potential_length->IsArrayLength()) {
2160 return potential_length->InputAt(0) == potential_array;
2161 }
2162
2163 if (potential_array->IsNewArray()) {
2164 return potential_array->AsNewArray()->GetLength() == potential_length;
2165 }
2166
2167 return false;
2168 }
2169
SimplifySystemArrayCopy(HInvoke * instruction)2170 void InstructionSimplifierVisitor::SimplifySystemArrayCopy(HInvoke* instruction) {
2171 HInstruction* source = instruction->InputAt(0);
2172 HInstruction* destination = instruction->InputAt(2);
2173 HInstruction* count = instruction->InputAt(4);
2174 SystemArrayCopyOptimizations optimizations(instruction);
2175 if (CanEnsureNotNullAt(source, instruction)) {
2176 optimizations.SetSourceIsNotNull();
2177 }
2178 if (CanEnsureNotNullAt(destination, instruction)) {
2179 optimizations.SetDestinationIsNotNull();
2180 }
2181 if (destination == source) {
2182 optimizations.SetDestinationIsSource();
2183 }
2184
2185 if (IsArrayLengthOf(count, source)) {
2186 optimizations.SetCountIsSourceLength();
2187 }
2188
2189 if (IsArrayLengthOf(count, destination)) {
2190 optimizations.SetCountIsDestinationLength();
2191 }
2192
2193 {
2194 ScopedObjectAccess soa(Thread::Current());
2195 DataType::Type source_component_type = DataType::Type::kVoid;
2196 DataType::Type destination_component_type = DataType::Type::kVoid;
2197 ReferenceTypeInfo destination_rti = destination->GetReferenceTypeInfo();
2198 if (destination_rti.IsValid()) {
2199 if (destination_rti.IsObjectArray()) {
2200 if (destination_rti.IsExact()) {
2201 optimizations.SetDoesNotNeedTypeCheck();
2202 }
2203 optimizations.SetDestinationIsTypedObjectArray();
2204 }
2205 if (destination_rti.IsPrimitiveArrayClass()) {
2206 destination_component_type = DataTypeFromPrimitive(
2207 destination_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
2208 optimizations.SetDestinationIsPrimitiveArray();
2209 } else if (destination_rti.IsNonPrimitiveArrayClass()) {
2210 optimizations.SetDestinationIsNonPrimitiveArray();
2211 }
2212 }
2213 ReferenceTypeInfo source_rti = source->GetReferenceTypeInfo();
2214 if (source_rti.IsValid()) {
2215 if (destination_rti.IsValid() && destination_rti.CanArrayHoldValuesOf(source_rti)) {
2216 optimizations.SetDoesNotNeedTypeCheck();
2217 }
2218 if (source_rti.IsPrimitiveArrayClass()) {
2219 optimizations.SetSourceIsPrimitiveArray();
2220 source_component_type = DataTypeFromPrimitive(
2221 source_rti.GetTypeHandle()->GetComponentType()->GetPrimitiveType());
2222 } else if (source_rti.IsNonPrimitiveArrayClass()) {
2223 optimizations.SetSourceIsNonPrimitiveArray();
2224 }
2225 }
2226 // For primitive arrays, use their optimized ArtMethod implementations.
2227 if ((source_component_type != DataType::Type::kVoid) &&
2228 (source_component_type == destination_component_type)) {
2229 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2230 PointerSize image_size = class_linker->GetImagePointerSize();
2231 HInvokeStaticOrDirect* invoke = instruction->AsInvokeStaticOrDirect();
2232 ObjPtr<mirror::Class> system = invoke->GetResolvedMethod()->GetDeclaringClass();
2233 ArtMethod* method = nullptr;
2234 switch (source_component_type) {
2235 case DataType::Type::kBool:
2236 method = system->FindClassMethod("arraycopy", "([ZI[ZII)V", image_size);
2237 break;
2238 case DataType::Type::kInt8:
2239 method = system->FindClassMethod("arraycopy", "([BI[BII)V", image_size);
2240 break;
2241 case DataType::Type::kUint16:
2242 method = system->FindClassMethod("arraycopy", "([CI[CII)V", image_size);
2243 break;
2244 case DataType::Type::kInt16:
2245 method = system->FindClassMethod("arraycopy", "([SI[SII)V", image_size);
2246 break;
2247 case DataType::Type::kInt32:
2248 method = system->FindClassMethod("arraycopy", "([II[III)V", image_size);
2249 break;
2250 case DataType::Type::kFloat32:
2251 method = system->FindClassMethod("arraycopy", "([FI[FII)V", image_size);
2252 break;
2253 case DataType::Type::kInt64:
2254 method = system->FindClassMethod("arraycopy", "([JI[JII)V", image_size);
2255 break;
2256 case DataType::Type::kFloat64:
2257 method = system->FindClassMethod("arraycopy", "([DI[DII)V", image_size);
2258 break;
2259 default:
2260 LOG(FATAL) << "Unreachable";
2261 }
2262 DCHECK(method != nullptr);
2263 DCHECK(method->IsStatic());
2264 DCHECK(method->GetDeclaringClass() == system);
2265 invoke->SetResolvedMethod(method);
2266 // Sharpen the new invoke. Note that we do not update the dex method index of
2267 // the invoke, as we would need to look it up in the current dex file, and it
2268 // is unlikely that it exists. The most usual situation for such typed
2269 // arraycopy methods is a direct pointer to the boot image.
2270 invoke->SetDispatchInfo(HSharpening::SharpenInvokeStaticOrDirect(method, codegen_));
2271 }
2272 }
2273 }
2274
SimplifyCompare(HInvoke * invoke,bool is_signum,DataType::Type type)2275 void InstructionSimplifierVisitor::SimplifyCompare(HInvoke* invoke,
2276 bool is_signum,
2277 DataType::Type type) {
2278 DCHECK(invoke->IsInvokeStaticOrDirect());
2279 uint32_t dex_pc = invoke->GetDexPc();
2280 HInstruction* left = invoke->InputAt(0);
2281 HInstruction* right;
2282 if (!is_signum) {
2283 right = invoke->InputAt(1);
2284 } else if (type == DataType::Type::kInt64) {
2285 right = GetGraph()->GetLongConstant(0);
2286 } else {
2287 right = GetGraph()->GetIntConstant(0);
2288 }
2289 HCompare* compare = new (GetGraph()->GetAllocator())
2290 HCompare(type, left, right, ComparisonBias::kNoBias, dex_pc);
2291 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, compare);
2292 }
2293
SimplifyIsNaN(HInvoke * invoke)2294 void InstructionSimplifierVisitor::SimplifyIsNaN(HInvoke* invoke) {
2295 DCHECK(invoke->IsInvokeStaticOrDirect());
2296 uint32_t dex_pc = invoke->GetDexPc();
2297 // IsNaN(x) is the same as x != x.
2298 HInstruction* x = invoke->InputAt(0);
2299 HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc);
2300 condition->SetBias(ComparisonBias::kLtBias);
2301 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, condition);
2302 }
2303
SimplifyFP2Int(HInvoke * invoke)2304 void InstructionSimplifierVisitor::SimplifyFP2Int(HInvoke* invoke) {
2305 DCHECK(invoke->IsInvokeStaticOrDirect());
2306 uint32_t dex_pc = invoke->GetDexPc();
2307 HInstruction* x = invoke->InputAt(0);
2308 DataType::Type type = x->GetType();
2309 // Set proper bit pattern for NaN and replace intrinsic with raw version.
2310 HInstruction* nan;
2311 if (type == DataType::Type::kFloat64) {
2312 nan = GetGraph()->GetLongConstant(0x7ff8000000000000L);
2313 invoke->SetIntrinsic(Intrinsics::kDoubleDoubleToRawLongBits,
2314 kNeedsEnvironmentOrCache,
2315 kNoSideEffects,
2316 kNoThrow);
2317 } else {
2318 DCHECK_EQ(type, DataType::Type::kFloat32);
2319 nan = GetGraph()->GetIntConstant(0x7fc00000);
2320 invoke->SetIntrinsic(Intrinsics::kFloatFloatToRawIntBits,
2321 kNeedsEnvironmentOrCache,
2322 kNoSideEffects,
2323 kNoThrow);
2324 }
2325 // Test IsNaN(x), which is the same as x != x.
2326 HCondition* condition = new (GetGraph()->GetAllocator()) HNotEqual(x, x, dex_pc);
2327 condition->SetBias(ComparisonBias::kLtBias);
2328 invoke->GetBlock()->InsertInstructionBefore(condition, invoke->GetNext());
2329 // Select between the two.
2330 HInstruction* select = new (GetGraph()->GetAllocator()) HSelect(condition, nan, invoke, dex_pc);
2331 invoke->GetBlock()->InsertInstructionBefore(select, condition->GetNext());
2332 invoke->ReplaceWithExceptInReplacementAtIndex(select, 0); // false at index 0
2333 }
2334
SimplifyStringCharAt(HInvoke * invoke)2335 void InstructionSimplifierVisitor::SimplifyStringCharAt(HInvoke* invoke) {
2336 HInstruction* str = invoke->InputAt(0);
2337 HInstruction* index = invoke->InputAt(1);
2338 uint32_t dex_pc = invoke->GetDexPc();
2339 ArenaAllocator* allocator = GetGraph()->GetAllocator();
2340 // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
2341 // so create the HArrayLength, HBoundsCheck and HArrayGet.
2342 HArrayLength* length = new (allocator) HArrayLength(str, dex_pc, /* is_string_length= */ true);
2343 invoke->GetBlock()->InsertInstructionBefore(length, invoke);
2344 HBoundsCheck* bounds_check = new (allocator) HBoundsCheck(
2345 index, length, dex_pc, /* is_string_char_at= */ true);
2346 invoke->GetBlock()->InsertInstructionBefore(bounds_check, invoke);
2347 HArrayGet* array_get = new (allocator) HArrayGet(str,
2348 bounds_check,
2349 DataType::Type::kUint16,
2350 SideEffects::None(), // Strings are immutable.
2351 dex_pc,
2352 /* is_string_char_at= */ true);
2353 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, array_get);
2354 bounds_check->CopyEnvironmentFrom(invoke->GetEnvironment());
2355 GetGraph()->SetHasBoundsChecks(true);
2356 }
2357
SimplifyStringIsEmptyOrLength(HInvoke * invoke)2358 void InstructionSimplifierVisitor::SimplifyStringIsEmptyOrLength(HInvoke* invoke) {
2359 HInstruction* str = invoke->InputAt(0);
2360 uint32_t dex_pc = invoke->GetDexPc();
2361 // We treat String as an array to allow DCE and BCE to seamlessly work on strings,
2362 // so create the HArrayLength.
2363 HArrayLength* length =
2364 new (GetGraph()->GetAllocator()) HArrayLength(str, dex_pc, /* is_string_length= */ true);
2365 HInstruction* replacement;
2366 if (invoke->GetIntrinsic() == Intrinsics::kStringIsEmpty) {
2367 // For String.isEmpty(), create the `HEqual` representing the `length == 0`.
2368 invoke->GetBlock()->InsertInstructionBefore(length, invoke);
2369 HIntConstant* zero = GetGraph()->GetIntConstant(0);
2370 HEqual* equal = new (GetGraph()->GetAllocator()) HEqual(length, zero, dex_pc);
2371 replacement = equal;
2372 } else {
2373 DCHECK_EQ(invoke->GetIntrinsic(), Intrinsics::kStringLength);
2374 replacement = length;
2375 }
2376 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, replacement);
2377 }
2378
SimplifyStringIndexOf(HInvoke * invoke)2379 void InstructionSimplifierVisitor::SimplifyStringIndexOf(HInvoke* invoke) {
2380 DCHECK(invoke->GetIntrinsic() == Intrinsics::kStringIndexOf ||
2381 invoke->GetIntrinsic() == Intrinsics::kStringIndexOfAfter);
2382 if (invoke->InputAt(0)->IsLoadString()) {
2383 HLoadString* load_string = invoke->InputAt(0)->AsLoadString();
2384 const DexFile& dex_file = load_string->GetDexFile();
2385 uint32_t utf16_length;
2386 const char* data =
2387 dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), &utf16_length);
2388 if (utf16_length == 0) {
2389 invoke->ReplaceWith(GetGraph()->GetIntConstant(-1));
2390 invoke->GetBlock()->RemoveInstruction(invoke);
2391 RecordSimplification();
2392 return;
2393 }
2394 if (utf16_length == 1 && invoke->GetIntrinsic() == Intrinsics::kStringIndexOf) {
2395 // Simplify to HSelect(HEquals(., load_string.charAt(0)), 0, -1).
2396 // If the sought character is supplementary, this gives the correct result, i.e. -1.
2397 uint32_t c = GetUtf16FromUtf8(&data);
2398 DCHECK_EQ(GetTrailingUtf16Char(c), 0u);
2399 DCHECK_EQ(GetLeadingUtf16Char(c), c);
2400 uint32_t dex_pc = invoke->GetDexPc();
2401 ArenaAllocator* allocator = GetGraph()->GetAllocator();
2402 HEqual* equal =
2403 new (allocator) HEqual(invoke->InputAt(1), GetGraph()->GetIntConstant(c), dex_pc);
2404 invoke->GetBlock()->InsertInstructionBefore(equal, invoke);
2405 HSelect* result = new (allocator) HSelect(equal,
2406 GetGraph()->GetIntConstant(0),
2407 GetGraph()->GetIntConstant(-1),
2408 dex_pc);
2409 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, result);
2410 RecordSimplification();
2411 return;
2412 }
2413 }
2414 }
2415
2416 // This method should only be used on intrinsics whose sole way of throwing an
2417 // exception is raising a NPE when the nth argument is null. If that argument
2418 // is provably non-null, we can clear the flag.
SimplifyNPEOnArgN(HInvoke * invoke,size_t n)2419 void InstructionSimplifierVisitor::SimplifyNPEOnArgN(HInvoke* invoke, size_t n) {
2420 HInstruction* arg = invoke->InputAt(n);
2421 if (invoke->CanThrow() && !arg->CanBeNull()) {
2422 invoke->SetCanThrow(false);
2423 }
2424 }
2425
2426 // Methods that return "this" can replace the returned value with the receiver.
SimplifyReturnThis(HInvoke * invoke)2427 void InstructionSimplifierVisitor::SimplifyReturnThis(HInvoke* invoke) {
2428 if (invoke->HasUses()) {
2429 HInstruction* receiver = invoke->InputAt(0);
2430 invoke->ReplaceWith(receiver);
2431 RecordSimplification();
2432 }
2433 }
2434
2435 // Helper method for StringBuffer escape analysis.
NoEscapeForStringBufferReference(HInstruction * reference,HInstruction * user)2436 static bool NoEscapeForStringBufferReference(HInstruction* reference, HInstruction* user) {
2437 if (user->IsInvokeStaticOrDirect()) {
2438 // Any constructor on StringBuffer is okay.
2439 return user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr &&
2440 user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() &&
2441 user->InputAt(0) == reference;
2442 } else if (user->IsInvokeVirtual()) {
2443 switch (user->AsInvokeVirtual()->GetIntrinsic()) {
2444 case Intrinsics::kStringBufferLength:
2445 case Intrinsics::kStringBufferToString:
2446 DCHECK_EQ(user->InputAt(0), reference);
2447 return true;
2448 case Intrinsics::kStringBufferAppend:
2449 // Returns "this", so only okay if no further uses.
2450 DCHECK_EQ(user->InputAt(0), reference);
2451 DCHECK_NE(user->InputAt(1), reference);
2452 return !user->HasUses();
2453 default:
2454 break;
2455 }
2456 }
2457 return false;
2458 }
2459
TryReplaceStringBuilderAppend(HInvoke * invoke)2460 static bool TryReplaceStringBuilderAppend(HInvoke* invoke) {
2461 DCHECK_EQ(invoke->GetIntrinsic(), Intrinsics::kStringBuilderToString);
2462 if (invoke->CanThrowIntoCatchBlock()) {
2463 return false;
2464 }
2465
2466 HBasicBlock* block = invoke->GetBlock();
2467 HInstruction* sb = invoke->InputAt(0);
2468
2469 // We support only a new StringBuilder, otherwise we cannot ensure that
2470 // the StringBuilder data does not need to be populated for other users.
2471 if (!sb->IsNewInstance()) {
2472 return false;
2473 }
2474
2475 // For now, we support only single-block recognition.
2476 // (Ternary operators feeding the append could be implemented.)
2477 for (const HUseListNode<HInstruction*>& use : sb->GetUses()) {
2478 if (use.GetUser()->GetBlock() != block) {
2479 return false;
2480 }
2481 // The append pattern uses the StringBuilder only as the first argument.
2482 if (use.GetIndex() != 0u) {
2483 return false;
2484 }
2485 }
2486
2487 // Collect args and check for unexpected uses.
2488 // We expect one call to a constructor with no arguments, one constructor fence (unless
2489 // eliminated), some number of append calls and one call to StringBuilder.toString().
2490 bool seen_constructor = false;
2491 bool seen_constructor_fence = false;
2492 bool seen_to_string = false;
2493 uint32_t format = 0u;
2494 uint32_t num_args = 0u;
2495 HInstruction* args[StringBuilderAppend::kMaxArgs]; // Added in reverse order.
2496 for (HBackwardInstructionIterator iter(block->GetInstructions()); !iter.Done(); iter.Advance()) {
2497 HInstruction* user = iter.Current();
2498 // Instructions of interest apply to `sb`, skip those that do not involve `sb`.
2499 if (user->InputCount() == 0u || user->InputAt(0u) != sb) {
2500 continue;
2501 }
2502 // We visit the uses in reverse order, so the StringBuilder.toString() must come first.
2503 if (!seen_to_string) {
2504 if (user == invoke) {
2505 seen_to_string = true;
2506 continue;
2507 } else {
2508 return false;
2509 }
2510 }
2511 // Then we should see the arguments.
2512 if (user->IsInvokeVirtual()) {
2513 HInvokeVirtual* as_invoke_virtual = user->AsInvokeVirtual();
2514 DCHECK(!seen_constructor);
2515 DCHECK(!seen_constructor_fence);
2516 StringBuilderAppend::Argument arg;
2517 switch (as_invoke_virtual->GetIntrinsic()) {
2518 case Intrinsics::kStringBuilderAppendObject:
2519 // TODO: Unimplemented, needs to call String.valueOf().
2520 return false;
2521 case Intrinsics::kStringBuilderAppendString:
2522 arg = StringBuilderAppend::Argument::kString;
2523 break;
2524 case Intrinsics::kStringBuilderAppendCharArray:
2525 // TODO: Unimplemented, StringBuilder.append(char[]) can throw NPE and we would
2526 // not have the correct stack trace for it.
2527 return false;
2528 case Intrinsics::kStringBuilderAppendBoolean:
2529 arg = StringBuilderAppend::Argument::kBoolean;
2530 break;
2531 case Intrinsics::kStringBuilderAppendChar:
2532 arg = StringBuilderAppend::Argument::kChar;
2533 break;
2534 case Intrinsics::kStringBuilderAppendInt:
2535 arg = StringBuilderAppend::Argument::kInt;
2536 break;
2537 case Intrinsics::kStringBuilderAppendLong:
2538 arg = StringBuilderAppend::Argument::kLong;
2539 break;
2540 case Intrinsics::kStringBuilderAppendCharSequence: {
2541 ReferenceTypeInfo rti = user->AsInvokeVirtual()->InputAt(1)->GetReferenceTypeInfo();
2542 if (!rti.IsValid()) {
2543 return false;
2544 }
2545 ScopedObjectAccess soa(Thread::Current());
2546 Handle<mirror::Class> input_type = rti.GetTypeHandle();
2547 DCHECK(input_type != nullptr);
2548 if (input_type.Get() == GetClassRoot<mirror::String>()) {
2549 arg = StringBuilderAppend::Argument::kString;
2550 } else {
2551 // TODO: Check and implement for StringBuilder. We could find the StringBuilder's
2552 // internal char[] inconsistent with the length, or the string compression
2553 // of the result could be compromised with a concurrent modification, and
2554 // we would need to throw appropriate exceptions.
2555 return false;
2556 }
2557 break;
2558 }
2559 case Intrinsics::kStringBuilderAppendFloat:
2560 case Intrinsics::kStringBuilderAppendDouble:
2561 // TODO: Unimplemented, needs to call FloatingDecimal.getBinaryToASCIIConverter().
2562 return false;
2563 default: {
2564 return false;
2565 }
2566 }
2567 // Uses of the append return value should have been replaced with the first input.
2568 DCHECK(!as_invoke_virtual->HasUses());
2569 DCHECK(!as_invoke_virtual->HasEnvironmentUses());
2570 if (num_args == StringBuilderAppend::kMaxArgs) {
2571 return false;
2572 }
2573 format = (format << StringBuilderAppend::kBitsPerArg) | static_cast<uint32_t>(arg);
2574 args[num_args] = as_invoke_virtual->InputAt(1u);
2575 ++num_args;
2576 } else if (user->IsInvokeStaticOrDirect() &&
2577 user->AsInvokeStaticOrDirect()->GetResolvedMethod() != nullptr &&
2578 user->AsInvokeStaticOrDirect()->GetResolvedMethod()->IsConstructor() &&
2579 user->AsInvokeStaticOrDirect()->GetNumberOfArguments() == 1u) {
2580 // After arguments, we should see the constructor.
2581 // We accept only the constructor with no extra arguments.
2582 DCHECK(!seen_constructor);
2583 DCHECK(!seen_constructor_fence);
2584 seen_constructor = true;
2585 } else if (user->IsConstructorFence()) {
2586 // The last use we see is the constructor fence.
2587 DCHECK(seen_constructor);
2588 DCHECK(!seen_constructor_fence);
2589 seen_constructor_fence = true;
2590 } else {
2591 return false;
2592 }
2593 }
2594
2595 if (num_args == 0u) {
2596 return false;
2597 }
2598
2599 // Check environment uses.
2600 for (const HUseListNode<HEnvironment*>& use : sb->GetEnvUses()) {
2601 HInstruction* holder = use.GetUser()->GetHolder();
2602 if (holder->GetBlock() != block) {
2603 return false;
2604 }
2605 // Accept only calls on the StringBuilder (which shall all be removed).
2606 // TODO: Carve-out for const-string? Or rely on environment pruning (to be implemented)?
2607 if (holder->InputCount() == 0 || holder->InputAt(0) != sb) {
2608 return false;
2609 }
2610 }
2611
2612 // Create replacement instruction.
2613 HIntConstant* fmt = block->GetGraph()->GetIntConstant(static_cast<int32_t>(format));
2614 ArenaAllocator* allocator = block->GetGraph()->GetAllocator();
2615 HStringBuilderAppend* append =
2616 new (allocator) HStringBuilderAppend(fmt, num_args, allocator, invoke->GetDexPc());
2617 append->SetReferenceTypeInfo(invoke->GetReferenceTypeInfo());
2618 for (size_t i = 0; i != num_args; ++i) {
2619 append->SetArgumentAt(i, args[num_args - 1u - i]);
2620 }
2621 block->InsertInstructionBefore(append, invoke);
2622 DCHECK(!invoke->CanBeNull());
2623 DCHECK(!append->CanBeNull());
2624 invoke->ReplaceWith(append);
2625 // Copy environment, except for the StringBuilder uses.
2626 for (HEnvironment* env = invoke->GetEnvironment(); env != nullptr; env = env->GetParent()) {
2627 for (size_t i = 0, size = env->Size(); i != size; ++i) {
2628 if (env->GetInstructionAt(i) == sb) {
2629 env->RemoveAsUserOfInput(i);
2630 env->SetRawEnvAt(i, /*instruction=*/ nullptr);
2631 }
2632 }
2633 }
2634 append->CopyEnvironmentFrom(invoke->GetEnvironment());
2635 // Remove the old instruction.
2636 block->RemoveInstruction(invoke);
2637 // Remove the StringBuilder's uses and StringBuilder.
2638 while (sb->HasNonEnvironmentUses()) {
2639 block->RemoveInstruction(sb->GetUses().front().GetUser());
2640 }
2641 DCHECK(!sb->HasEnvironmentUses());
2642 block->RemoveInstruction(sb);
2643 return true;
2644 }
2645
2646 // Certain allocation intrinsics are not removed by dead code elimination
2647 // because of potentially throwing an OOM exception or other side effects.
2648 // This method removes such intrinsics when special circumstances allow.
SimplifyAllocationIntrinsic(HInvoke * invoke)2649 void InstructionSimplifierVisitor::SimplifyAllocationIntrinsic(HInvoke* invoke) {
2650 if (!invoke->HasUses()) {
2651 // Instruction has no uses. If unsynchronized, we can remove right away, safely ignoring
2652 // the potential OOM of course. Otherwise, we must ensure the receiver object of this
2653 // call does not escape since only thread-local synchronization may be removed.
2654 bool is_synchronized = invoke->GetIntrinsic() == Intrinsics::kStringBufferToString;
2655 HInstruction* receiver = invoke->InputAt(0);
2656 if (!is_synchronized || DoesNotEscape(receiver, NoEscapeForStringBufferReference)) {
2657 invoke->GetBlock()->RemoveInstruction(invoke);
2658 RecordSimplification();
2659 }
2660 } else if (invoke->GetIntrinsic() == Intrinsics::kStringBuilderToString &&
2661 TryReplaceStringBuilderAppend(invoke)) {
2662 RecordSimplification();
2663 }
2664 }
2665
SimplifyMemBarrier(HInvoke * invoke,MemBarrierKind barrier_kind)2666 void InstructionSimplifierVisitor::SimplifyMemBarrier(HInvoke* invoke,
2667 MemBarrierKind barrier_kind) {
2668 uint32_t dex_pc = invoke->GetDexPc();
2669 HMemoryBarrier* mem_barrier =
2670 new (GetGraph()->GetAllocator()) HMemoryBarrier(barrier_kind, dex_pc);
2671 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, mem_barrier);
2672 }
2673
SimplifyMin(HInvoke * invoke,DataType::Type type)2674 void InstructionSimplifierVisitor::SimplifyMin(HInvoke* invoke, DataType::Type type) {
2675 DCHECK(invoke->IsInvokeStaticOrDirect());
2676 HMin* min = new (GetGraph()->GetAllocator())
2677 HMin(type, invoke->InputAt(0), invoke->InputAt(1), invoke->GetDexPc());
2678 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, min);
2679 }
2680
SimplifyMax(HInvoke * invoke,DataType::Type type)2681 void InstructionSimplifierVisitor::SimplifyMax(HInvoke* invoke, DataType::Type type) {
2682 DCHECK(invoke->IsInvokeStaticOrDirect());
2683 HMax* max = new (GetGraph()->GetAllocator())
2684 HMax(type, invoke->InputAt(0), invoke->InputAt(1), invoke->GetDexPc());
2685 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, max);
2686 }
2687
SimplifyAbs(HInvoke * invoke,DataType::Type type)2688 void InstructionSimplifierVisitor::SimplifyAbs(HInvoke* invoke, DataType::Type type) {
2689 DCHECK(invoke->IsInvokeStaticOrDirect());
2690 HAbs* abs = new (GetGraph()->GetAllocator())
2691 HAbs(type, invoke->InputAt(0), invoke->GetDexPc());
2692 invoke->GetBlock()->ReplaceAndRemoveInstructionWith(invoke, abs);
2693 }
2694
VisitInvoke(HInvoke * instruction)2695 void InstructionSimplifierVisitor::VisitInvoke(HInvoke* instruction) {
2696 switch (instruction->GetIntrinsic()) {
2697 case Intrinsics::kStringEquals:
2698 SimplifyStringEquals(instruction);
2699 break;
2700 case Intrinsics::kSystemArrayCopy:
2701 SimplifySystemArrayCopy(instruction);
2702 break;
2703 case Intrinsics::kIntegerRotateRight:
2704 SimplifyRotate(instruction, /* is_left= */ false, DataType::Type::kInt32);
2705 break;
2706 case Intrinsics::kLongRotateRight:
2707 SimplifyRotate(instruction, /* is_left= */ false, DataType::Type::kInt64);
2708 break;
2709 case Intrinsics::kIntegerRotateLeft:
2710 SimplifyRotate(instruction, /* is_left= */ true, DataType::Type::kInt32);
2711 break;
2712 case Intrinsics::kLongRotateLeft:
2713 SimplifyRotate(instruction, /* is_left= */ true, DataType::Type::kInt64);
2714 break;
2715 case Intrinsics::kIntegerCompare:
2716 SimplifyCompare(instruction, /* is_signum= */ false, DataType::Type::kInt32);
2717 break;
2718 case Intrinsics::kLongCompare:
2719 SimplifyCompare(instruction, /* is_signum= */ false, DataType::Type::kInt64);
2720 break;
2721 case Intrinsics::kIntegerSignum:
2722 SimplifyCompare(instruction, /* is_signum= */ true, DataType::Type::kInt32);
2723 break;
2724 case Intrinsics::kLongSignum:
2725 SimplifyCompare(instruction, /* is_signum= */ true, DataType::Type::kInt64);
2726 break;
2727 case Intrinsics::kFloatIsNaN:
2728 case Intrinsics::kDoubleIsNaN:
2729 SimplifyIsNaN(instruction);
2730 break;
2731 case Intrinsics::kFloatFloatToIntBits:
2732 case Intrinsics::kDoubleDoubleToLongBits:
2733 SimplifyFP2Int(instruction);
2734 break;
2735 case Intrinsics::kStringCharAt:
2736 SimplifyStringCharAt(instruction);
2737 break;
2738 case Intrinsics::kStringIsEmpty:
2739 case Intrinsics::kStringLength:
2740 SimplifyStringIsEmptyOrLength(instruction);
2741 break;
2742 case Intrinsics::kStringIndexOf:
2743 case Intrinsics::kStringIndexOfAfter:
2744 SimplifyStringIndexOf(instruction);
2745 break;
2746 case Intrinsics::kStringStringIndexOf:
2747 case Intrinsics::kStringStringIndexOfAfter:
2748 SimplifyNPEOnArgN(instruction, 1); // 0th has own NullCheck
2749 break;
2750 case Intrinsics::kStringBufferAppend:
2751 case Intrinsics::kStringBuilderAppendObject:
2752 case Intrinsics::kStringBuilderAppendString:
2753 case Intrinsics::kStringBuilderAppendCharSequence:
2754 case Intrinsics::kStringBuilderAppendCharArray:
2755 case Intrinsics::kStringBuilderAppendBoolean:
2756 case Intrinsics::kStringBuilderAppendChar:
2757 case Intrinsics::kStringBuilderAppendInt:
2758 case Intrinsics::kStringBuilderAppendLong:
2759 case Intrinsics::kStringBuilderAppendFloat:
2760 case Intrinsics::kStringBuilderAppendDouble:
2761 SimplifyReturnThis(instruction);
2762 break;
2763 case Intrinsics::kStringBufferToString:
2764 case Intrinsics::kStringBuilderToString:
2765 SimplifyAllocationIntrinsic(instruction);
2766 break;
2767 case Intrinsics::kUnsafeLoadFence:
2768 SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2769 break;
2770 case Intrinsics::kUnsafeStoreFence:
2771 SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
2772 break;
2773 case Intrinsics::kUnsafeFullFence:
2774 SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
2775 break;
2776 case Intrinsics::kVarHandleFullFence:
2777 SimplifyMemBarrier(instruction, MemBarrierKind::kAnyAny);
2778 break;
2779 case Intrinsics::kVarHandleAcquireFence:
2780 SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2781 break;
2782 case Intrinsics::kVarHandleReleaseFence:
2783 SimplifyMemBarrier(instruction, MemBarrierKind::kAnyStore);
2784 break;
2785 case Intrinsics::kVarHandleLoadLoadFence:
2786 SimplifyMemBarrier(instruction, MemBarrierKind::kLoadAny);
2787 break;
2788 case Intrinsics::kVarHandleStoreStoreFence:
2789 SimplifyMemBarrier(instruction, MemBarrierKind::kStoreStore);
2790 break;
2791 case Intrinsics::kMathMinIntInt:
2792 SimplifyMin(instruction, DataType::Type::kInt32);
2793 break;
2794 case Intrinsics::kMathMinLongLong:
2795 SimplifyMin(instruction, DataType::Type::kInt64);
2796 break;
2797 case Intrinsics::kMathMinFloatFloat:
2798 SimplifyMin(instruction, DataType::Type::kFloat32);
2799 break;
2800 case Intrinsics::kMathMinDoubleDouble:
2801 SimplifyMin(instruction, DataType::Type::kFloat64);
2802 break;
2803 case Intrinsics::kMathMaxIntInt:
2804 SimplifyMax(instruction, DataType::Type::kInt32);
2805 break;
2806 case Intrinsics::kMathMaxLongLong:
2807 SimplifyMax(instruction, DataType::Type::kInt64);
2808 break;
2809 case Intrinsics::kMathMaxFloatFloat:
2810 SimplifyMax(instruction, DataType::Type::kFloat32);
2811 break;
2812 case Intrinsics::kMathMaxDoubleDouble:
2813 SimplifyMax(instruction, DataType::Type::kFloat64);
2814 break;
2815 case Intrinsics::kMathAbsInt:
2816 SimplifyAbs(instruction, DataType::Type::kInt32);
2817 break;
2818 case Intrinsics::kMathAbsLong:
2819 SimplifyAbs(instruction, DataType::Type::kInt64);
2820 break;
2821 case Intrinsics::kMathAbsFloat:
2822 SimplifyAbs(instruction, DataType::Type::kFloat32);
2823 break;
2824 case Intrinsics::kMathAbsDouble:
2825 SimplifyAbs(instruction, DataType::Type::kFloat64);
2826 break;
2827 default:
2828 break;
2829 }
2830 }
2831
VisitDeoptimize(HDeoptimize * deoptimize)2832 void InstructionSimplifierVisitor::VisitDeoptimize(HDeoptimize* deoptimize) {
2833 HInstruction* cond = deoptimize->InputAt(0);
2834 if (cond->IsConstant()) {
2835 if (cond->AsIntConstant()->IsFalse()) {
2836 // Never deopt: instruction can be removed.
2837 if (deoptimize->GuardsAnInput()) {
2838 deoptimize->ReplaceWith(deoptimize->GuardedInput());
2839 }
2840 deoptimize->GetBlock()->RemoveInstruction(deoptimize);
2841 } else {
2842 // Always deopt.
2843 }
2844 }
2845 }
2846
2847 // Replace code looking like
2848 // OP y, x, const1
2849 // OP z, y, const2
2850 // with
2851 // OP z, x, const3
2852 // where OP is both an associative and a commutative operation.
TryHandleAssociativeAndCommutativeOperation(HBinaryOperation * instruction)2853 bool InstructionSimplifierVisitor::TryHandleAssociativeAndCommutativeOperation(
2854 HBinaryOperation* instruction) {
2855 DCHECK(instruction->IsCommutative());
2856
2857 if (!DataType::IsIntegralType(instruction->GetType())) {
2858 return false;
2859 }
2860
2861 HInstruction* left = instruction->GetLeft();
2862 HInstruction* right = instruction->GetRight();
2863 // Variable names as described above.
2864 HConstant* const2;
2865 HBinaryOperation* y;
2866
2867 if (instruction->GetKind() == left->GetKind() && right->IsConstant()) {
2868 const2 = right->AsConstant();
2869 y = left->AsBinaryOperation();
2870 } else if (left->IsConstant() && instruction->GetKind() == right->GetKind()) {
2871 const2 = left->AsConstant();
2872 y = right->AsBinaryOperation();
2873 } else {
2874 // The node does not match the pattern.
2875 return false;
2876 }
2877
2878 // If `y` has more than one use, we do not perform the optimization
2879 // because it might increase code size (e.g. if the new constant is
2880 // no longer encodable as an immediate operand in the target ISA).
2881 if (!y->HasOnlyOneNonEnvironmentUse()) {
2882 return false;
2883 }
2884
2885 // GetConstantRight() can return both left and right constants
2886 // for commutative operations.
2887 HConstant* const1 = y->GetConstantRight();
2888 if (const1 == nullptr) {
2889 return false;
2890 }
2891
2892 instruction->ReplaceInput(const1, 0);
2893 instruction->ReplaceInput(const2, 1);
2894 HConstant* const3 = instruction->TryStaticEvaluation();
2895 DCHECK(const3 != nullptr);
2896 instruction->ReplaceInput(y->GetLeastConstantLeft(), 0);
2897 instruction->ReplaceInput(const3, 1);
2898 RecordSimplification();
2899 return true;
2900 }
2901
AsAddOrSub(HInstruction * binop)2902 static HBinaryOperation* AsAddOrSub(HInstruction* binop) {
2903 return (binop->IsAdd() || binop->IsSub()) ? binop->AsBinaryOperation() : nullptr;
2904 }
2905
2906 // Helper function that performs addition statically, considering the result type.
ComputeAddition(DataType::Type type,int64_t x,int64_t y)2907 static int64_t ComputeAddition(DataType::Type type, int64_t x, int64_t y) {
2908 // Use the Compute() method for consistency with TryStaticEvaluation().
2909 if (type == DataType::Type::kInt32) {
2910 return HAdd::Compute<int32_t>(x, y);
2911 } else {
2912 DCHECK_EQ(type, DataType::Type::kInt64);
2913 return HAdd::Compute<int64_t>(x, y);
2914 }
2915 }
2916
2917 // Helper function that handles the child classes of HConstant
2918 // and returns an integer with the appropriate sign.
GetValue(HConstant * constant,bool is_negated)2919 static int64_t GetValue(HConstant* constant, bool is_negated) {
2920 int64_t ret = Int64FromConstant(constant);
2921 return is_negated ? -ret : ret;
2922 }
2923
2924 // Replace code looking like
2925 // OP1 y, x, const1
2926 // OP2 z, y, const2
2927 // with
2928 // OP3 z, x, const3
2929 // where OPx is either ADD or SUB, and at least one of OP{1,2} is SUB.
TrySubtractionChainSimplification(HBinaryOperation * instruction)2930 bool InstructionSimplifierVisitor::TrySubtractionChainSimplification(
2931 HBinaryOperation* instruction) {
2932 DCHECK(instruction->IsAdd() || instruction->IsSub()) << instruction->DebugName();
2933
2934 DataType::Type type = instruction->GetType();
2935 if (!DataType::IsIntegralType(type)) {
2936 return false;
2937 }
2938
2939 HInstruction* left = instruction->GetLeft();
2940 HInstruction* right = instruction->GetRight();
2941 // Variable names as described above.
2942 HConstant* const2 = right->IsConstant() ? right->AsConstant() : left->AsConstant();
2943 if (const2 == nullptr) {
2944 return false;
2945 }
2946
2947 HBinaryOperation* y = (AsAddOrSub(left) != nullptr)
2948 ? left->AsBinaryOperation()
2949 : AsAddOrSub(right);
2950 // If y has more than one use, we do not perform the optimization because
2951 // it might increase code size (e.g. if the new constant is no longer
2952 // encodable as an immediate operand in the target ISA).
2953 if ((y == nullptr) || !y->HasOnlyOneNonEnvironmentUse()) {
2954 return false;
2955 }
2956
2957 left = y->GetLeft();
2958 HConstant* const1 = left->IsConstant() ? left->AsConstant() : y->GetRight()->AsConstant();
2959 if (const1 == nullptr) {
2960 return false;
2961 }
2962
2963 HInstruction* x = (const1 == left) ? y->GetRight() : left;
2964 // If both inputs are constants, let the constant folding pass deal with it.
2965 if (x->IsConstant()) {
2966 return false;
2967 }
2968
2969 bool is_const2_negated = (const2 == right) && instruction->IsSub();
2970 int64_t const2_val = GetValue(const2, is_const2_negated);
2971 bool is_y_negated = (y == right) && instruction->IsSub();
2972 right = y->GetRight();
2973 bool is_const1_negated = is_y_negated ^ ((const1 == right) && y->IsSub());
2974 int64_t const1_val = GetValue(const1, is_const1_negated);
2975 bool is_x_negated = is_y_negated ^ ((x == right) && y->IsSub());
2976 int64_t const3_val = ComputeAddition(type, const1_val, const2_val);
2977 HBasicBlock* block = instruction->GetBlock();
2978 HConstant* const3 = block->GetGraph()->GetConstant(type, const3_val);
2979 ArenaAllocator* allocator = instruction->GetAllocator();
2980 HInstruction* z;
2981
2982 if (is_x_negated) {
2983 z = new (allocator) HSub(type, const3, x, instruction->GetDexPc());
2984 } else {
2985 z = new (allocator) HAdd(type, x, const3, instruction->GetDexPc());
2986 }
2987
2988 block->ReplaceAndRemoveInstructionWith(instruction, z);
2989 RecordSimplification();
2990 return true;
2991 }
2992
VisitVecMul(HVecMul * instruction)2993 void InstructionSimplifierVisitor::VisitVecMul(HVecMul* instruction) {
2994 if (TryCombineVecMultiplyAccumulate(instruction)) {
2995 RecordSimplification();
2996 }
2997 }
2998
2999 } // namespace art
3000