1 /*
2 * Copyright (C) 2019 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "HalProxy.h"
18
19 #include <android/hardware/sensors/2.0/types.h>
20
21 #include <android-base/file.h>
22 #include "hardware_legacy/power.h"
23
24 #include <dlfcn.h>
25
26 #include <cinttypes>
27 #include <cmath>
28 #include <fstream>
29 #include <functional>
30 #include <thread>
31
32 namespace android {
33 namespace hardware {
34 namespace sensors {
35 namespace V2_1 {
36 namespace implementation {
37
38 using ::android::hardware::sensors::V1_0::Result;
39 using ::android::hardware::sensors::V2_0::EventQueueFlagBits;
40 using ::android::hardware::sensors::V2_0::WakeLockQueueFlagBits;
41 using ::android::hardware::sensors::V2_0::implementation::getTimeNow;
42 using ::android::hardware::sensors::V2_0::implementation::kWakelockTimeoutNs;
43
44 typedef V2_0::implementation::ISensorsSubHal*(SensorsHalGetSubHalFunc)(uint32_t*);
45 typedef V2_1::implementation::ISensorsSubHal*(SensorsHalGetSubHalV2_1Func)(uint32_t*);
46
47 static constexpr int32_t kBitsAfterSubHalIndex = 24;
48
49 /**
50 * Set the subhal index as first byte of sensor handle and return this modified version.
51 *
52 * @param sensorHandle The sensor handle to modify.
53 * @param subHalIndex The index in the hal proxy of the sub hal this sensor belongs to.
54 *
55 * @return The modified sensor handle.
56 */
setSubHalIndex(int32_t sensorHandle,size_t subHalIndex)57 int32_t setSubHalIndex(int32_t sensorHandle, size_t subHalIndex) {
58 return sensorHandle | (static_cast<int32_t>(subHalIndex) << kBitsAfterSubHalIndex);
59 }
60
61 /**
62 * Extract the subHalIndex from sensorHandle.
63 *
64 * @param sensorHandle The sensorHandle to extract from.
65 *
66 * @return The subhal index.
67 */
extractSubHalIndex(int32_t sensorHandle)68 size_t extractSubHalIndex(int32_t sensorHandle) {
69 return static_cast<size_t>(sensorHandle >> kBitsAfterSubHalIndex);
70 }
71
72 /**
73 * Convert nanoseconds to milliseconds.
74 *
75 * @param nanos The nanoseconds input.
76 *
77 * @return The milliseconds count.
78 */
msFromNs(int64_t nanos)79 int64_t msFromNs(int64_t nanos) {
80 constexpr int64_t nanosecondsInAMillsecond = 1000000;
81 return nanos / nanosecondsInAMillsecond;
82 }
83
HalProxy()84 HalProxy::HalProxy() {
85 const char* kMultiHalConfigFile = "/vendor/etc/sensors/hals.conf";
86 initializeSubHalListFromConfigFile(kMultiHalConfigFile);
87 init();
88 }
89
HalProxy(std::vector<ISensorsSubHalV2_0 * > & subHalList)90 HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList) {
91 for (ISensorsSubHalV2_0* subHal : subHalList) {
92 mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
93 }
94
95 init();
96 }
97
HalProxy(std::vector<ISensorsSubHalV2_0 * > & subHalList,std::vector<ISensorsSubHalV2_1 * > & subHalListV2_1)98 HalProxy::HalProxy(std::vector<ISensorsSubHalV2_0*>& subHalList,
99 std::vector<ISensorsSubHalV2_1*>& subHalListV2_1) {
100 for (ISensorsSubHalV2_0* subHal : subHalList) {
101 mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
102 }
103
104 for (ISensorsSubHalV2_1* subHal : subHalListV2_1) {
105 mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal));
106 }
107
108 init();
109 }
110
~HalProxy()111 HalProxy::~HalProxy() {
112 stopThreads();
113 }
114
getSensorsList_2_1(ISensorsV2_1::getSensorsList_2_1_cb _hidl_cb)115 Return<void> HalProxy::getSensorsList_2_1(ISensorsV2_1::getSensorsList_2_1_cb _hidl_cb) {
116 std::vector<V2_1::SensorInfo> sensors;
117 for (const auto& iter : mSensors) {
118 sensors.push_back(iter.second);
119 }
120 _hidl_cb(sensors);
121 return Void();
122 }
123
getSensorsList(ISensorsV2_0::getSensorsList_cb _hidl_cb)124 Return<void> HalProxy::getSensorsList(ISensorsV2_0::getSensorsList_cb _hidl_cb) {
125 std::vector<V1_0::SensorInfo> sensors;
126 for (const auto& iter : mSensors) {
127 sensors.push_back(convertToOldSensorInfo(iter.second));
128 }
129 _hidl_cb(sensors);
130 return Void();
131 }
132
setOperationMode(OperationMode mode)133 Return<Result> HalProxy::setOperationMode(OperationMode mode) {
134 Result result = Result::OK;
135 size_t subHalIndex;
136 for (subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
137 result = mSubHalList[subHalIndex]->setOperationMode(mode);
138 if (result != Result::OK) {
139 ALOGE("setOperationMode failed for SubHal: %s",
140 mSubHalList[subHalIndex]->getName().c_str());
141 break;
142 }
143 }
144
145 if (result != Result::OK) {
146 // Reset the subhal operation modes that have been flipped
147 for (size_t i = 0; i < subHalIndex; i++) {
148 mSubHalList[i]->setOperationMode(mCurrentOperationMode);
149 }
150 } else {
151 mCurrentOperationMode = mode;
152 }
153 return result;
154 }
155
activate(int32_t sensorHandle,bool enabled)156 Return<Result> HalProxy::activate(int32_t sensorHandle, bool enabled) {
157 if (!isSubHalIndexValid(sensorHandle)) {
158 return Result::BAD_VALUE;
159 }
160 return getSubHalForSensorHandle(sensorHandle)
161 ->activate(clearSubHalIndex(sensorHandle), enabled);
162 }
163
initialize_2_1(const::android::hardware::MQDescriptorSync<V2_1::Event> & eventQueueDescriptor,const::android::hardware::MQDescriptorSync<uint32_t> & wakeLockDescriptor,const sp<V2_1::ISensorsCallback> & sensorsCallback)164 Return<Result> HalProxy::initialize_2_1(
165 const ::android::hardware::MQDescriptorSync<V2_1::Event>& eventQueueDescriptor,
166 const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
167 const sp<V2_1::ISensorsCallback>& sensorsCallback) {
168 sp<ISensorsCallbackWrapperBase> dynamicCallback =
169 new ISensorsCallbackWrapperV2_1(sensorsCallback);
170
171 // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
172 auto eventQueue =
173 std::make_unique<EventMessageQueueV2_1>(eventQueueDescriptor, true /* resetPointers */);
174 std::unique_ptr<EventMessageQueueWrapperBase> queue =
175 std::make_unique<EventMessageQueueWrapperV2_1>(eventQueue);
176
177 return initializeCommon(queue, wakeLockDescriptor, dynamicCallback);
178 }
179
initialize(const::android::hardware::MQDescriptorSync<V1_0::Event> & eventQueueDescriptor,const::android::hardware::MQDescriptorSync<uint32_t> & wakeLockDescriptor,const sp<V2_0::ISensorsCallback> & sensorsCallback)180 Return<Result> HalProxy::initialize(
181 const ::android::hardware::MQDescriptorSync<V1_0::Event>& eventQueueDescriptor,
182 const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
183 const sp<V2_0::ISensorsCallback>& sensorsCallback) {
184 sp<ISensorsCallbackWrapperBase> dynamicCallback =
185 new ISensorsCallbackWrapperV2_0(sensorsCallback);
186
187 // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
188 auto eventQueue =
189 std::make_unique<EventMessageQueueV2_0>(eventQueueDescriptor, true /* resetPointers */);
190 std::unique_ptr<EventMessageQueueWrapperBase> queue =
191 std::make_unique<EventMessageQueueWrapperV1_0>(eventQueue);
192
193 return initializeCommon(queue, wakeLockDescriptor, dynamicCallback);
194 }
195
initializeCommon(std::unique_ptr<EventMessageQueueWrapperBase> & eventQueue,const::android::hardware::MQDescriptorSync<uint32_t> & wakeLockDescriptor,const sp<ISensorsCallbackWrapperBase> & sensorsCallback)196 Return<Result> HalProxy::initializeCommon(
197 std::unique_ptr<EventMessageQueueWrapperBase>& eventQueue,
198 const ::android::hardware::MQDescriptorSync<uint32_t>& wakeLockDescriptor,
199 const sp<ISensorsCallbackWrapperBase>& sensorsCallback) {
200 Result result = Result::OK;
201
202 stopThreads();
203 resetSharedWakelock();
204
205 // So that the pending write events queue can be cleared safely and when we start threads
206 // again we do not get new events until after initialize resets the subhals.
207 disableAllSensors();
208
209 // Clears the queue if any events were pending write before.
210 mPendingWriteEventsQueue = std::queue<std::pair<std::vector<V2_1::Event>, size_t>>();
211 mSizePendingWriteEventsQueue = 0;
212
213 // Clears previously connected dynamic sensors
214 mDynamicSensors.clear();
215
216 mDynamicSensorsCallback = sensorsCallback;
217
218 // Create the Event FMQ from the eventQueueDescriptor. Reset the read/write positions.
219 mEventQueue = std::move(eventQueue);
220
221 // Create the Wake Lock FMQ that is used by the framework to communicate whenever WAKE_UP
222 // events have been successfully read and handled by the framework.
223 mWakeLockQueue =
224 std::make_unique<WakeLockMessageQueue>(wakeLockDescriptor, true /* resetPointers */);
225
226 if (mEventQueueFlag != nullptr) {
227 EventFlag::deleteEventFlag(&mEventQueueFlag);
228 }
229 if (mWakelockQueueFlag != nullptr) {
230 EventFlag::deleteEventFlag(&mWakelockQueueFlag);
231 }
232 if (EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag) != OK) {
233 result = Result::BAD_VALUE;
234 }
235 if (EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakelockQueueFlag) != OK) {
236 result = Result::BAD_VALUE;
237 }
238 if (!mDynamicSensorsCallback || !mEventQueue || !mWakeLockQueue || mEventQueueFlag == nullptr) {
239 result = Result::BAD_VALUE;
240 }
241
242 mThreadsRun.store(true);
243
244 mPendingWritesThread = std::thread(startPendingWritesThread, this);
245 mWakelockThread = std::thread(startWakelockThread, this);
246
247 for (size_t i = 0; i < mSubHalList.size(); i++) {
248 Result currRes = mSubHalList[i]->initialize(this, this, i);
249 if (currRes != Result::OK) {
250 result = currRes;
251 ALOGE("Subhal '%s' failed to initialize.", mSubHalList[i]->getName().c_str());
252 break;
253 }
254 }
255
256 mCurrentOperationMode = OperationMode::NORMAL;
257
258 return result;
259 }
260
batch(int32_t sensorHandle,int64_t samplingPeriodNs,int64_t maxReportLatencyNs)261 Return<Result> HalProxy::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
262 int64_t maxReportLatencyNs) {
263 if (!isSubHalIndexValid(sensorHandle)) {
264 return Result::BAD_VALUE;
265 }
266 return getSubHalForSensorHandle(sensorHandle)
267 ->batch(clearSubHalIndex(sensorHandle), samplingPeriodNs, maxReportLatencyNs);
268 }
269
flush(int32_t sensorHandle)270 Return<Result> HalProxy::flush(int32_t sensorHandle) {
271 if (!isSubHalIndexValid(sensorHandle)) {
272 return Result::BAD_VALUE;
273 }
274 return getSubHalForSensorHandle(sensorHandle)->flush(clearSubHalIndex(sensorHandle));
275 }
276
injectSensorData_2_1(const V2_1::Event & event)277 Return<Result> HalProxy::injectSensorData_2_1(const V2_1::Event& event) {
278 return injectSensorData(convertToOldEvent(event));
279 }
280
injectSensorData(const V1_0::Event & event)281 Return<Result> HalProxy::injectSensorData(const V1_0::Event& event) {
282 Result result = Result::OK;
283 if (mCurrentOperationMode == OperationMode::NORMAL &&
284 event.sensorType != V1_0::SensorType::ADDITIONAL_INFO) {
285 ALOGE("An event with type != ADDITIONAL_INFO passed to injectSensorData while operation"
286 " mode was NORMAL.");
287 result = Result::BAD_VALUE;
288 }
289 if (result == Result::OK) {
290 V1_0::Event subHalEvent = event;
291 if (!isSubHalIndexValid(event.sensorHandle)) {
292 return Result::BAD_VALUE;
293 }
294 subHalEvent.sensorHandle = clearSubHalIndex(event.sensorHandle);
295 result = getSubHalForSensorHandle(event.sensorHandle)
296 ->injectSensorData(convertToNewEvent(subHalEvent));
297 }
298 return result;
299 }
300
registerDirectChannel(const SharedMemInfo & mem,ISensorsV2_0::registerDirectChannel_cb _hidl_cb)301 Return<void> HalProxy::registerDirectChannel(const SharedMemInfo& mem,
302 ISensorsV2_0::registerDirectChannel_cb _hidl_cb) {
303 if (mDirectChannelSubHal == nullptr) {
304 _hidl_cb(Result::INVALID_OPERATION, -1 /* channelHandle */);
305 } else {
306 mDirectChannelSubHal->registerDirectChannel(mem, _hidl_cb);
307 }
308 return Return<void>();
309 }
310
unregisterDirectChannel(int32_t channelHandle)311 Return<Result> HalProxy::unregisterDirectChannel(int32_t channelHandle) {
312 Result result;
313 if (mDirectChannelSubHal == nullptr) {
314 result = Result::INVALID_OPERATION;
315 } else {
316 result = mDirectChannelSubHal->unregisterDirectChannel(channelHandle);
317 }
318 return result;
319 }
320
configDirectReport(int32_t sensorHandle,int32_t channelHandle,RateLevel rate,ISensorsV2_0::configDirectReport_cb _hidl_cb)321 Return<void> HalProxy::configDirectReport(int32_t sensorHandle, int32_t channelHandle,
322 RateLevel rate,
323 ISensorsV2_0::configDirectReport_cb _hidl_cb) {
324 if (mDirectChannelSubHal == nullptr) {
325 _hidl_cb(Result::INVALID_OPERATION, -1 /* reportToken */);
326 } else if (sensorHandle == -1 && rate != RateLevel::STOP) {
327 _hidl_cb(Result::BAD_VALUE, -1 /* reportToken */);
328 } else {
329 // -1 denotes all sensors should be disabled
330 if (sensorHandle != -1) {
331 sensorHandle = clearSubHalIndex(sensorHandle);
332 }
333 mDirectChannelSubHal->configDirectReport(sensorHandle, channelHandle, rate, _hidl_cb);
334 }
335 return Return<void>();
336 }
337
debug(const hidl_handle & fd,const hidl_vec<hidl_string> &)338 Return<void> HalProxy::debug(const hidl_handle& fd, const hidl_vec<hidl_string>& /*args*/) {
339 if (fd.getNativeHandle() == nullptr || fd->numFds < 1) {
340 ALOGE("%s: missing fd for writing", __FUNCTION__);
341 return Void();
342 }
343
344 android::base::borrowed_fd writeFd = dup(fd->data[0]);
345
346 std::ostringstream stream;
347 stream << "===HalProxy===" << std::endl;
348 stream << "Internal values:" << std::endl;
349 stream << " Threads are running: " << (mThreadsRun.load() ? "true" : "false") << std::endl;
350 int64_t now = getTimeNow();
351 stream << " Wakelock timeout start time: " << msFromNs(now - mWakelockTimeoutStartTime)
352 << " ms ago" << std::endl;
353 stream << " Wakelock timeout reset time: " << msFromNs(now - mWakelockTimeoutResetTime)
354 << " ms ago" << std::endl;
355 // TODO(b/142969448): Add logging for history of wakelock acquisition per subhal.
356 stream << " Wakelock ref count: " << mWakelockRefCount << std::endl;
357 stream << " # of events on pending write writes queue: " << mSizePendingWriteEventsQueue
358 << std::endl;
359 stream << " Most events seen on pending write events queue: "
360 << mMostEventsObservedPendingWriteEventsQueue << std::endl;
361 if (!mPendingWriteEventsQueue.empty()) {
362 stream << " Size of events list on front of pending writes queue: "
363 << mPendingWriteEventsQueue.front().first.size() << std::endl;
364 }
365 stream << " # of non-dynamic sensors across all subhals: " << mSensors.size() << std::endl;
366 stream << " # of dynamic sensors across all subhals: " << mDynamicSensors.size() << std::endl;
367 stream << "SubHals (" << mSubHalList.size() << "):" << std::endl;
368 for (auto& subHal : mSubHalList) {
369 stream << " Name: " << subHal->getName() << std::endl;
370 stream << " Debug dump: " << std::endl;
371 android::base::WriteStringToFd(stream.str(), writeFd);
372 subHal->debug(fd, {});
373 stream.str("");
374 stream << std::endl;
375 }
376 android::base::WriteStringToFd(stream.str(), writeFd);
377 return Return<void>();
378 }
379
onDynamicSensorsConnected(const hidl_vec<SensorInfo> & dynamicSensorsAdded,int32_t subHalIndex)380 Return<void> HalProxy::onDynamicSensorsConnected(const hidl_vec<SensorInfo>& dynamicSensorsAdded,
381 int32_t subHalIndex) {
382 std::vector<SensorInfo> sensors;
383 {
384 std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
385 for (SensorInfo sensor : dynamicSensorsAdded) {
386 if (!subHalIndexIsClear(sensor.sensorHandle)) {
387 ALOGE("Dynamic sensor added %s had sensorHandle with first byte not 0.",
388 sensor.name.c_str());
389 } else {
390 sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
391 mDynamicSensors[sensor.sensorHandle] = sensor;
392 sensors.push_back(sensor);
393 }
394 }
395 }
396 mDynamicSensorsCallback->onDynamicSensorsConnected(sensors);
397 return Return<void>();
398 }
399
onDynamicSensorsDisconnected(const hidl_vec<int32_t> & dynamicSensorHandlesRemoved,int32_t subHalIndex)400 Return<void> HalProxy::onDynamicSensorsDisconnected(
401 const hidl_vec<int32_t>& dynamicSensorHandlesRemoved, int32_t subHalIndex) {
402 // TODO(b/143302327): Block this call until all pending events are flushed from queue
403 std::vector<int32_t> sensorHandles;
404 {
405 std::lock_guard<std::mutex> lock(mDynamicSensorsMutex);
406 for (int32_t sensorHandle : dynamicSensorHandlesRemoved) {
407 if (!subHalIndexIsClear(sensorHandle)) {
408 ALOGE("Dynamic sensorHandle removed had first byte not 0.");
409 } else {
410 sensorHandle = setSubHalIndex(sensorHandle, subHalIndex);
411 if (mDynamicSensors.find(sensorHandle) != mDynamicSensors.end()) {
412 mDynamicSensors.erase(sensorHandle);
413 sensorHandles.push_back(sensorHandle);
414 }
415 }
416 }
417 }
418 mDynamicSensorsCallback->onDynamicSensorsDisconnected(sensorHandles);
419 return Return<void>();
420 }
421
initializeSubHalListFromConfigFile(const char * configFileName)422 void HalProxy::initializeSubHalListFromConfigFile(const char* configFileName) {
423 std::ifstream subHalConfigStream(configFileName);
424 if (!subHalConfigStream) {
425 ALOGE("Failed to load subHal config file: %s", configFileName);
426 } else {
427 std::string subHalLibraryFile;
428 while (subHalConfigStream >> subHalLibraryFile) {
429 void* handle = getHandleForSubHalSharedObject(subHalLibraryFile);
430 if (handle == nullptr) {
431 ALOGE("dlopen failed for library: %s", subHalLibraryFile.c_str());
432 } else {
433 SensorsHalGetSubHalFunc* sensorsHalGetSubHalPtr =
434 (SensorsHalGetSubHalFunc*)dlsym(handle, "sensorsHalGetSubHal");
435 if (sensorsHalGetSubHalPtr != nullptr) {
436 std::function<SensorsHalGetSubHalFunc> sensorsHalGetSubHal =
437 *sensorsHalGetSubHalPtr;
438 uint32_t version;
439 ISensorsSubHalV2_0* subHal = sensorsHalGetSubHal(&version);
440 if (version != SUB_HAL_2_0_VERSION) {
441 ALOGE("SubHal version was not 2.0 for library: %s",
442 subHalLibraryFile.c_str());
443 } else {
444 ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str());
445 mSubHalList.push_back(std::make_unique<SubHalWrapperV2_0>(subHal));
446 }
447 } else {
448 SensorsHalGetSubHalV2_1Func* getSubHalV2_1Ptr =
449 (SensorsHalGetSubHalV2_1Func*)dlsym(handle, "sensorsHalGetSubHal_2_1");
450
451 if (getSubHalV2_1Ptr == nullptr) {
452 ALOGE("Failed to locate sensorsHalGetSubHal function for library: %s",
453 subHalLibraryFile.c_str());
454 } else {
455 std::function<SensorsHalGetSubHalV2_1Func> sensorsHalGetSubHal_2_1 =
456 *getSubHalV2_1Ptr;
457 uint32_t version;
458 ISensorsSubHalV2_1* subHal = sensorsHalGetSubHal_2_1(&version);
459 if (version != SUB_HAL_2_1_VERSION) {
460 ALOGE("SubHal version was not 2.1 for library: %s",
461 subHalLibraryFile.c_str());
462 } else {
463 ALOGV("Loaded SubHal from library: %s", subHalLibraryFile.c_str());
464 mSubHalList.push_back(std::make_unique<SubHalWrapperV2_1>(subHal));
465 }
466 }
467 }
468 }
469 }
470 }
471 }
472
initializeSensorList()473 void HalProxy::initializeSensorList() {
474 for (size_t subHalIndex = 0; subHalIndex < mSubHalList.size(); subHalIndex++) {
475 auto result = mSubHalList[subHalIndex]->getSensorsList([&](const auto& list) {
476 for (SensorInfo sensor : list) {
477 if (!subHalIndexIsClear(sensor.sensorHandle)) {
478 ALOGE("SubHal sensorHandle's first byte was not 0");
479 } else {
480 ALOGV("Loaded sensor: %s", sensor.name.c_str());
481 sensor.sensorHandle = setSubHalIndex(sensor.sensorHandle, subHalIndex);
482 setDirectChannelFlags(&sensor, mSubHalList[subHalIndex]);
483 mSensors[sensor.sensorHandle] = sensor;
484 }
485 }
486 });
487 if (!result.isOk()) {
488 ALOGE("getSensorsList call failed for SubHal: %s",
489 mSubHalList[subHalIndex]->getName().c_str());
490 }
491 }
492 }
493
getHandleForSubHalSharedObject(const std::string & filename)494 void* HalProxy::getHandleForSubHalSharedObject(const std::string& filename) {
495 static const std::string kSubHalShareObjectLocations[] = {
496 "", // Default locations will be searched
497 #ifdef __LP64__
498 "/vendor/lib64/hw/", "/odm/lib64/hw/"
499 #else
500 "/vendor/lib/hw/", "/odm/lib/hw/"
501 #endif
502 };
503
504 for (const std::string& dir : kSubHalShareObjectLocations) {
505 void* handle = dlopen((dir + filename).c_str(), RTLD_NOW);
506 if (handle != nullptr) {
507 return handle;
508 }
509 }
510 return nullptr;
511 }
512
init()513 void HalProxy::init() {
514 initializeSensorList();
515 }
516
stopThreads()517 void HalProxy::stopThreads() {
518 mThreadsRun.store(false);
519 if (mEventQueueFlag != nullptr && mEventQueue != nullptr) {
520 size_t numToRead = mEventQueue->availableToRead();
521 std::vector<Event> events(numToRead);
522 mEventQueue->read(events.data(), numToRead);
523 mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ));
524 }
525 if (mWakelockQueueFlag != nullptr && mWakeLockQueue != nullptr) {
526 uint32_t kZero = 0;
527 mWakeLockQueue->write(&kZero);
528 mWakelockQueueFlag->wake(static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN));
529 }
530 mWakelockCV.notify_one();
531 mEventQueueWriteCV.notify_one();
532 if (mPendingWritesThread.joinable()) {
533 mPendingWritesThread.join();
534 }
535 if (mWakelockThread.joinable()) {
536 mWakelockThread.join();
537 }
538 }
539
disableAllSensors()540 void HalProxy::disableAllSensors() {
541 for (const auto& sensorEntry : mSensors) {
542 int32_t sensorHandle = sensorEntry.first;
543 activate(sensorHandle, false /* enabled */);
544 }
545 std::lock_guard<std::mutex> dynamicSensorsLock(mDynamicSensorsMutex);
546 for (const auto& sensorEntry : mDynamicSensors) {
547 int32_t sensorHandle = sensorEntry.first;
548 activate(sensorHandle, false /* enabled */);
549 }
550 }
551
startPendingWritesThread(HalProxy * halProxy)552 void HalProxy::startPendingWritesThread(HalProxy* halProxy) {
553 halProxy->handlePendingWrites();
554 }
555
handlePendingWrites()556 void HalProxy::handlePendingWrites() {
557 // TODO(b/143302327): Find a way to optimize locking strategy maybe using two mutexes instead of
558 // one.
559 std::unique_lock<std::mutex> lock(mEventQueueWriteMutex);
560 while (mThreadsRun.load()) {
561 mEventQueueWriteCV.wait(
562 lock, [&] { return !mPendingWriteEventsQueue.empty() || !mThreadsRun.load(); });
563 if (mThreadsRun.load()) {
564 std::vector<Event>& pendingWriteEvents = mPendingWriteEventsQueue.front().first;
565 size_t numWakeupEvents = mPendingWriteEventsQueue.front().second;
566 size_t eventQueueSize = mEventQueue->getQuantumCount();
567 size_t numToWrite = std::min(pendingWriteEvents.size(), eventQueueSize);
568 lock.unlock();
569 if (!mEventQueue->writeBlocking(
570 pendingWriteEvents.data(), numToWrite,
571 static_cast<uint32_t>(EventQueueFlagBits::EVENTS_READ),
572 static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS),
573 kPendingWriteTimeoutNs, mEventQueueFlag)) {
574 ALOGE("Dropping %zu events after blockingWrite failed.", numToWrite);
575 if (numWakeupEvents > 0) {
576 if (pendingWriteEvents.size() > eventQueueSize) {
577 decrementRefCountAndMaybeReleaseWakelock(
578 countNumWakeupEvents(pendingWriteEvents, eventQueueSize));
579 } else {
580 decrementRefCountAndMaybeReleaseWakelock(numWakeupEvents);
581 }
582 }
583 }
584 lock.lock();
585 mSizePendingWriteEventsQueue -= numToWrite;
586 if (pendingWriteEvents.size() > eventQueueSize) {
587 // TODO(b/143302327): Check if this erase operation is too inefficient. It will copy
588 // all the events ahead of it down to fill gap off array at front after the erase.
589 pendingWriteEvents.erase(pendingWriteEvents.begin(),
590 pendingWriteEvents.begin() + eventQueueSize);
591 } else {
592 mPendingWriteEventsQueue.pop();
593 }
594 }
595 }
596 }
597
startWakelockThread(HalProxy * halProxy)598 void HalProxy::startWakelockThread(HalProxy* halProxy) {
599 halProxy->handleWakelocks();
600 }
601
handleWakelocks()602 void HalProxy::handleWakelocks() {
603 std::unique_lock<std::recursive_mutex> lock(mWakelockMutex);
604 while (mThreadsRun.load()) {
605 mWakelockCV.wait(lock, [&] { return mWakelockRefCount > 0 || !mThreadsRun.load(); });
606 if (mThreadsRun.load()) {
607 int64_t timeLeft;
608 if (sharedWakelockDidTimeout(&timeLeft)) {
609 resetSharedWakelock();
610 } else {
611 uint32_t numWakeLocksProcessed;
612 lock.unlock();
613 bool success = mWakeLockQueue->readBlocking(
614 &numWakeLocksProcessed, 1, 0,
615 static_cast<uint32_t>(WakeLockQueueFlagBits::DATA_WRITTEN), timeLeft);
616 lock.lock();
617 if (success) {
618 decrementRefCountAndMaybeReleaseWakelock(
619 static_cast<size_t>(numWakeLocksProcessed));
620 }
621 }
622 }
623 }
624 resetSharedWakelock();
625 }
626
sharedWakelockDidTimeout(int64_t * timeLeft)627 bool HalProxy::sharedWakelockDidTimeout(int64_t* timeLeft) {
628 bool didTimeout;
629 int64_t duration = getTimeNow() - mWakelockTimeoutStartTime;
630 if (duration > kWakelockTimeoutNs) {
631 didTimeout = true;
632 } else {
633 didTimeout = false;
634 *timeLeft = kWakelockTimeoutNs - duration;
635 }
636 return didTimeout;
637 }
638
resetSharedWakelock()639 void HalProxy::resetSharedWakelock() {
640 std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
641 decrementRefCountAndMaybeReleaseWakelock(mWakelockRefCount);
642 mWakelockTimeoutResetTime = getTimeNow();
643 }
644
postEventsToMessageQueue(const std::vector<Event> & events,size_t numWakeupEvents,V2_0::implementation::ScopedWakelock wakelock)645 void HalProxy::postEventsToMessageQueue(const std::vector<Event>& events, size_t numWakeupEvents,
646 V2_0::implementation::ScopedWakelock wakelock) {
647 size_t numToWrite = 0;
648 std::lock_guard<std::mutex> lock(mEventQueueWriteMutex);
649 if (wakelock.isLocked()) {
650 incrementRefCountAndMaybeAcquireWakelock(numWakeupEvents);
651 }
652 if (mPendingWriteEventsQueue.empty()) {
653 numToWrite = std::min(events.size(), mEventQueue->availableToWrite());
654 if (numToWrite > 0) {
655 if (mEventQueue->write(events.data(), numToWrite)) {
656 // TODO(b/143302327): While loop if mEventQueue->avaiableToWrite > 0 to possibly fit
657 // in more writes immediately
658 mEventQueueFlag->wake(static_cast<uint32_t>(EventQueueFlagBits::READ_AND_PROCESS));
659 } else {
660 numToWrite = 0;
661 }
662 }
663 }
664 size_t numLeft = events.size() - numToWrite;
665 if (numToWrite < events.size() &&
666 mSizePendingWriteEventsQueue + numLeft <= kMaxSizePendingWriteEventsQueue) {
667 std::vector<Event> eventsLeft(events.begin() + numToWrite, events.end());
668 mPendingWriteEventsQueue.push({eventsLeft, numWakeupEvents});
669 mSizePendingWriteEventsQueue += numLeft;
670 mMostEventsObservedPendingWriteEventsQueue =
671 std::max(mMostEventsObservedPendingWriteEventsQueue, mSizePendingWriteEventsQueue);
672 mEventQueueWriteCV.notify_one();
673 }
674 }
675
incrementRefCountAndMaybeAcquireWakelock(size_t delta,int64_t * timeoutStart)676 bool HalProxy::incrementRefCountAndMaybeAcquireWakelock(size_t delta,
677 int64_t* timeoutStart /* = nullptr */) {
678 if (!mThreadsRun.load()) return false;
679 std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
680 if (mWakelockRefCount == 0) {
681 acquire_wake_lock(PARTIAL_WAKE_LOCK, kWakelockName);
682 mWakelockCV.notify_one();
683 }
684 mWakelockTimeoutStartTime = getTimeNow();
685 mWakelockRefCount += delta;
686 if (timeoutStart != nullptr) {
687 *timeoutStart = mWakelockTimeoutStartTime;
688 }
689 return true;
690 }
691
decrementRefCountAndMaybeReleaseWakelock(size_t delta,int64_t timeoutStart)692 void HalProxy::decrementRefCountAndMaybeReleaseWakelock(size_t delta,
693 int64_t timeoutStart /* = -1 */) {
694 if (!mThreadsRun.load()) return;
695 std::lock_guard<std::recursive_mutex> lockGuard(mWakelockMutex);
696 if (timeoutStart == -1) timeoutStart = mWakelockTimeoutResetTime;
697 if (mWakelockRefCount == 0 || timeoutStart < mWakelockTimeoutResetTime) return;
698 mWakelockRefCount -= std::min(mWakelockRefCount, delta);
699 if (mWakelockRefCount == 0) {
700 release_wake_lock(kWakelockName);
701 }
702 }
703
setDirectChannelFlags(SensorInfo * sensorInfo,std::shared_ptr<ISubHalWrapperBase> subHal)704 void HalProxy::setDirectChannelFlags(SensorInfo* sensorInfo,
705 std::shared_ptr<ISubHalWrapperBase> subHal) {
706 bool sensorSupportsDirectChannel =
707 (sensorInfo->flags & (V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
708 V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL)) != 0;
709 if (mDirectChannelSubHal == nullptr && sensorSupportsDirectChannel) {
710 mDirectChannelSubHal = subHal;
711 } else if (mDirectChannelSubHal != nullptr && subHal != mDirectChannelSubHal) {
712 // disable direct channel capability for sensors in subHals that are not
713 // the only one we will enable
714 sensorInfo->flags &= ~(V1_0::SensorFlagBits::MASK_DIRECT_REPORT |
715 V1_0::SensorFlagBits::MASK_DIRECT_CHANNEL);
716 }
717 }
718
getSubHalForSensorHandle(int32_t sensorHandle)719 std::shared_ptr<ISubHalWrapperBase> HalProxy::getSubHalForSensorHandle(int32_t sensorHandle) {
720 return mSubHalList[extractSubHalIndex(sensorHandle)];
721 }
722
isSubHalIndexValid(int32_t sensorHandle)723 bool HalProxy::isSubHalIndexValid(int32_t sensorHandle) {
724 return extractSubHalIndex(sensorHandle) < mSubHalList.size();
725 }
726
countNumWakeupEvents(const std::vector<Event> & events,size_t n)727 size_t HalProxy::countNumWakeupEvents(const std::vector<Event>& events, size_t n) {
728 size_t numWakeupEvents = 0;
729 for (size_t i = 0; i < n; i++) {
730 int32_t sensorHandle = events[i].sensorHandle;
731 if (mSensors[sensorHandle].flags & static_cast<uint32_t>(V1_0::SensorFlagBits::WAKE_UP)) {
732 numWakeupEvents++;
733 }
734 }
735 return numWakeupEvents;
736 }
737
clearSubHalIndex(int32_t sensorHandle)738 int32_t HalProxy::clearSubHalIndex(int32_t sensorHandle) {
739 return sensorHandle & (~kSensorHandleSubHalIndexMask);
740 }
741
subHalIndexIsClear(int32_t sensorHandle)742 bool HalProxy::subHalIndexIsClear(int32_t sensorHandle) {
743 return (sensorHandle & kSensorHandleSubHalIndexMask) == 0;
744 }
745
746 } // namespace implementation
747 } // namespace V2_1
748 } // namespace sensors
749 } // namespace hardware
750 } // namespace android
751