1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "loop_analysis.h"
18
19 #include "base/bit_vector-inl.h"
20 #include "induction_var_range.h"
21
22 namespace art {
23
CalculateLoopBasicProperties(HLoopInformation * loop_info,LoopAnalysisInfo * analysis_results,int64_t trip_count)24 void LoopAnalysis::CalculateLoopBasicProperties(HLoopInformation* loop_info,
25 LoopAnalysisInfo* analysis_results,
26 int64_t trip_count) {
27 analysis_results->trip_count_ = trip_count;
28
29 for (HBlocksInLoopIterator block_it(*loop_info);
30 !block_it.Done();
31 block_it.Advance()) {
32 HBasicBlock* block = block_it.Current();
33
34 // Check whether one of the successor is loop exit.
35 for (HBasicBlock* successor : block->GetSuccessors()) {
36 if (!loop_info->Contains(*successor)) {
37 analysis_results->exits_num_++;
38
39 // We track number of invariant loop exits which correspond to HIf instruction and
40 // can be eliminated by loop peeling; other control flow instruction are ignored and will
41 // not cause loop peeling to happen as they either cannot be inside a loop, or by
42 // definition cannot be loop exits (unconditional instructions), or are not beneficial for
43 // the optimization.
44 HIf* hif = block->GetLastInstruction()->AsIf();
45 if (hif != nullptr && !loop_info->Contains(*hif->InputAt(0)->GetBlock())) {
46 analysis_results->invariant_exits_num_++;
47 }
48 }
49 }
50
51 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
52 HInstruction* instruction = it.Current();
53 if (it.Current()->GetType() == DataType::Type::kInt64) {
54 analysis_results->has_long_type_instructions_ = true;
55 }
56 if (MakesScalarPeelingUnrollingNonBeneficial(instruction)) {
57 analysis_results->has_instructions_preventing_scalar_peeling_ = true;
58 analysis_results->has_instructions_preventing_scalar_unrolling_ = true;
59 }
60 analysis_results->instr_num_++;
61 }
62 analysis_results->bb_num_++;
63 }
64 }
65
GetLoopTripCount(HLoopInformation * loop_info,const InductionVarRange * induction_range)66 int64_t LoopAnalysis::GetLoopTripCount(HLoopInformation* loop_info,
67 const InductionVarRange* induction_range) {
68 int64_t trip_count;
69 if (!induction_range->HasKnownTripCount(loop_info, &trip_count)) {
70 trip_count = LoopAnalysisInfo::kUnknownTripCount;
71 }
72 return trip_count;
73 }
74
75 // Default implementation of loop helper; used for all targets unless a custom implementation
76 // is provided. Enables scalar loop peeling and unrolling with the most conservative heuristics.
77 class ArchDefaultLoopHelper : public ArchNoOptsLoopHelper {
78 public:
79 // Scalar loop unrolling parameters and heuristics.
80 //
81 // Maximum possible unrolling factor.
82 static constexpr uint32_t kScalarMaxUnrollFactor = 2;
83 // Loop's maximum instruction count. Loops with higher count will not be peeled/unrolled.
84 static constexpr uint32_t kScalarHeuristicMaxBodySizeInstr = 17;
85 // Loop's maximum basic block count. Loops with higher count will not be peeled/unrolled.
86 static constexpr uint32_t kScalarHeuristicMaxBodySizeBlocks = 6;
87 // Maximum number of instructions to be created as a result of full unrolling.
88 static constexpr uint32_t kScalarHeuristicFullyUnrolledMaxInstrThreshold = 35;
89
IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo * analysis_info) const90 bool IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo* analysis_info) const override {
91 return analysis_info->HasLongTypeInstructions() ||
92 IsLoopTooBig(analysis_info,
93 kScalarHeuristicMaxBodySizeInstr,
94 kScalarHeuristicMaxBodySizeBlocks);
95 }
96
GetScalarUnrollingFactor(const LoopAnalysisInfo * analysis_info) const97 uint32_t GetScalarUnrollingFactor(const LoopAnalysisInfo* analysis_info) const override {
98 int64_t trip_count = analysis_info->GetTripCount();
99 // Unroll only loops with known trip count.
100 if (trip_count == LoopAnalysisInfo::kUnknownTripCount) {
101 return LoopAnalysisInfo::kNoUnrollingFactor;
102 }
103 uint32_t desired_unrolling_factor = kScalarMaxUnrollFactor;
104 if (trip_count < desired_unrolling_factor || trip_count % desired_unrolling_factor != 0) {
105 return LoopAnalysisInfo::kNoUnrollingFactor;
106 }
107
108 return desired_unrolling_factor;
109 }
110
IsLoopPeelingEnabled() const111 bool IsLoopPeelingEnabled() const override { return true; }
112
IsFullUnrollingBeneficial(LoopAnalysisInfo * analysis_info) const113 bool IsFullUnrollingBeneficial(LoopAnalysisInfo* analysis_info) const override {
114 int64_t trip_count = analysis_info->GetTripCount();
115 // We assume that trip count is known.
116 DCHECK_NE(trip_count, LoopAnalysisInfo::kUnknownTripCount);
117 size_t instr_num = analysis_info->GetNumberOfInstructions();
118 return (trip_count * instr_num < kScalarHeuristicFullyUnrolledMaxInstrThreshold);
119 }
120
121 protected:
IsLoopTooBig(LoopAnalysisInfo * loop_analysis_info,size_t instr_threshold,size_t bb_threshold) const122 bool IsLoopTooBig(LoopAnalysisInfo* loop_analysis_info,
123 size_t instr_threshold,
124 size_t bb_threshold) const {
125 size_t instr_num = loop_analysis_info->GetNumberOfInstructions();
126 size_t bb_num = loop_analysis_info->GetNumberOfBasicBlocks();
127 return (instr_num >= instr_threshold || bb_num >= bb_threshold);
128 }
129 };
130
131 // Custom implementation of loop helper for arm64 target. Enables heuristics for scalar loop
132 // peeling and unrolling and supports SIMD loop unrolling.
133 class Arm64LoopHelper : public ArchDefaultLoopHelper {
134 public:
135 // SIMD loop unrolling parameters and heuristics.
136 //
137 // Maximum possible unrolling factor.
138 static constexpr uint32_t kArm64SimdMaxUnrollFactor = 8;
139 // Loop's maximum instruction count. Loops with higher count will not be unrolled.
140 static constexpr uint32_t kArm64SimdHeuristicMaxBodySizeInstr = 50;
141
142 // Loop's maximum instruction count. Loops with higher count will not be peeled/unrolled.
143 static constexpr uint32_t kArm64ScalarHeuristicMaxBodySizeInstr = 40;
144 // Loop's maximum basic block count. Loops with higher count will not be peeled/unrolled.
145 static constexpr uint32_t kArm64ScalarHeuristicMaxBodySizeBlocks = 8;
146
IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo * loop_analysis_info) const147 bool IsLoopNonBeneficialForScalarOpts(LoopAnalysisInfo* loop_analysis_info) const override {
148 return IsLoopTooBig(loop_analysis_info,
149 kArm64ScalarHeuristicMaxBodySizeInstr,
150 kArm64ScalarHeuristicMaxBodySizeBlocks);
151 }
152
GetSIMDUnrollingFactor(HBasicBlock * block,int64_t trip_count,uint32_t max_peel,uint32_t vector_length) const153 uint32_t GetSIMDUnrollingFactor(HBasicBlock* block,
154 int64_t trip_count,
155 uint32_t max_peel,
156 uint32_t vector_length) const override {
157 // Don't unroll with insufficient iterations.
158 // TODO: Unroll loops with unknown trip count.
159 DCHECK_NE(vector_length, 0u);
160 if (trip_count < (2 * vector_length + max_peel)) {
161 return LoopAnalysisInfo::kNoUnrollingFactor;
162 }
163 // Don't unroll for large loop body size.
164 uint32_t instruction_count = block->GetInstructions().CountSize();
165 if (instruction_count >= kArm64SimdHeuristicMaxBodySizeInstr) {
166 return LoopAnalysisInfo::kNoUnrollingFactor;
167 }
168 // Find a beneficial unroll factor with the following restrictions:
169 // - At least one iteration of the transformed loop should be executed.
170 // - The loop body shouldn't be "too big" (heuristic).
171
172 uint32_t uf1 = kArm64SimdHeuristicMaxBodySizeInstr / instruction_count;
173 uint32_t uf2 = (trip_count - max_peel) / vector_length;
174 uint32_t unroll_factor =
175 TruncToPowerOfTwo(std::min({uf1, uf2, kArm64SimdMaxUnrollFactor}));
176 DCHECK_GE(unroll_factor, 1u);
177 return unroll_factor;
178 }
179 };
180
181 // Custom implementation of loop helper for X86_64 target. Enables heuristics for scalar loop
182 // peeling and unrolling and supports SIMD loop unrolling.
183 class X86_64LoopHelper : public ArchDefaultLoopHelper {
184 // mapping of machine instruction count for most used IR instructions
185 // Few IRs generate different number of instructions based on input and result type.
186 // We checked top java apps, benchmarks and used the most generated instruction count.
GetMachineInstructionCount(HInstruction * inst) const187 uint32_t GetMachineInstructionCount(HInstruction* inst) const {
188 switch (inst->GetKind()) {
189 case HInstruction::InstructionKind::kAbs:
190 return 3;
191 case HInstruction::InstructionKind::kAdd:
192 return 1;
193 case HInstruction::InstructionKind::kAnd:
194 return 1;
195 case HInstruction::InstructionKind::kArrayLength:
196 return 1;
197 case HInstruction::InstructionKind::kArrayGet:
198 return 1;
199 case HInstruction::InstructionKind::kArraySet:
200 return 1;
201 case HInstruction::InstructionKind::kBoundsCheck:
202 return 2;
203 case HInstruction::InstructionKind::kCheckCast:
204 return 9;
205 case HInstruction::InstructionKind::kDiv:
206 return 8;
207 case HInstruction::InstructionKind::kDivZeroCheck:
208 return 2;
209 case HInstruction::InstructionKind::kEqual:
210 return 3;
211 case HInstruction::InstructionKind::kGreaterThan:
212 return 3;
213 case HInstruction::InstructionKind::kGreaterThanOrEqual:
214 return 3;
215 case HInstruction::InstructionKind::kIf:
216 return 2;
217 case HInstruction::InstructionKind::kInstanceFieldGet:
218 return 2;
219 case HInstruction::InstructionKind::kInstanceFieldSet:
220 return 1;
221 case HInstruction::InstructionKind::kLessThan:
222 return 3;
223 case HInstruction::InstructionKind::kLessThanOrEqual:
224 return 3;
225 case HInstruction::InstructionKind::kMax:
226 return 2;
227 case HInstruction::InstructionKind::kMin:
228 return 2;
229 case HInstruction::InstructionKind::kMul:
230 return 1;
231 case HInstruction::InstructionKind::kNotEqual:
232 return 3;
233 case HInstruction::InstructionKind::kOr:
234 return 1;
235 case HInstruction::InstructionKind::kRem:
236 return 11;
237 case HInstruction::InstructionKind::kSelect:
238 return 2;
239 case HInstruction::InstructionKind::kShl:
240 return 1;
241 case HInstruction::InstructionKind::kShr:
242 return 1;
243 case HInstruction::InstructionKind::kSub:
244 return 1;
245 case HInstruction::InstructionKind::kTypeConversion:
246 return 1;
247 case HInstruction::InstructionKind::kUShr:
248 return 1;
249 case HInstruction::InstructionKind::kVecReplicateScalar:
250 return 2;
251 case HInstruction::InstructionKind::kVecExtractScalar:
252 return 1;
253 case HInstruction::InstructionKind::kVecReduce:
254 return 4;
255 case HInstruction::InstructionKind::kVecNeg:
256 return 2;
257 case HInstruction::InstructionKind::kVecAbs:
258 return 4;
259 case HInstruction::InstructionKind::kVecNot:
260 return 3;
261 case HInstruction::InstructionKind::kVecAdd:
262 return 1;
263 case HInstruction::InstructionKind::kVecSub:
264 return 1;
265 case HInstruction::InstructionKind::kVecMul:
266 return 1;
267 case HInstruction::InstructionKind::kVecDiv:
268 return 1;
269 case HInstruction::InstructionKind::kVecMax:
270 return 1;
271 case HInstruction::InstructionKind::kVecMin:
272 return 1;
273 case HInstruction::InstructionKind::kVecOr:
274 return 1;
275 case HInstruction::InstructionKind::kVecXor:
276 return 1;
277 case HInstruction::InstructionKind::kVecShl:
278 return 1;
279 case HInstruction::InstructionKind::kVecShr:
280 return 1;
281 case HInstruction::InstructionKind::kVecLoad:
282 return 1;
283 case HInstruction::InstructionKind::kVecStore:
284 return 1;
285 case HInstruction::InstructionKind::kXor:
286 return 1;
287 default:
288 return 1;
289 }
290 }
291
292 // Maximum possible unrolling factor.
293 static constexpr uint32_t kX86_64MaxUnrollFactor = 2; // pow(2,2) = 4
294
295 // According to Intel® 64 and IA-32 Architectures Optimization Reference Manual,
296 // avoid excessive loop unrolling to ensure LSD (loop stream decoder) is operating efficiently.
297 // This variable takes care that unrolled loop instructions should not exceed LSD size.
298 // For Intel Atom processors (silvermont & goldmont), LSD size is 28
299 // TODO - identify architecture and LSD size at runtime
300 static constexpr uint32_t kX86_64UnrolledMaxBodySizeInstr = 28;
301
302 // Loop's maximum basic block count. Loops with higher count will not be partial
303 // unrolled (unknown iterations).
304 static constexpr uint32_t kX86_64UnknownIterMaxBodySizeBlocks = 2;
305
306 uint32_t GetUnrollingFactor(HLoopInformation* loop_info, HBasicBlock* header) const;
307
308 public:
GetSIMDUnrollingFactor(HBasicBlock * block,int64_t trip_count,uint32_t max_peel,uint32_t vector_length) const309 uint32_t GetSIMDUnrollingFactor(HBasicBlock* block,
310 int64_t trip_count,
311 uint32_t max_peel,
312 uint32_t vector_length) const override {
313 DCHECK_NE(vector_length, 0u);
314 HLoopInformation* loop_info = block->GetLoopInformation();
315 DCHECK(loop_info);
316 HBasicBlock* header = loop_info->GetHeader();
317 DCHECK(header);
318 uint32_t unroll_factor = 0;
319
320 if ((trip_count == 0) || (trip_count == LoopAnalysisInfo::kUnknownTripCount)) {
321 // Don't unroll for large loop body size.
322 unroll_factor = GetUnrollingFactor(loop_info, header);
323 if (unroll_factor <= 1) {
324 return LoopAnalysisInfo::kNoUnrollingFactor;
325 }
326 } else {
327 // Don't unroll with insufficient iterations.
328 if (trip_count < (2 * vector_length + max_peel)) {
329 return LoopAnalysisInfo::kNoUnrollingFactor;
330 }
331
332 // Don't unroll for large loop body size.
333 uint32_t unroll_cnt = GetUnrollingFactor(loop_info, header);
334 if (unroll_cnt <= 1) {
335 return LoopAnalysisInfo::kNoUnrollingFactor;
336 }
337
338 // Find a beneficial unroll factor with the following restrictions:
339 // - At least one iteration of the transformed loop should be executed.
340 // - The loop body shouldn't be "too big" (heuristic).
341 uint32_t uf2 = (trip_count - max_peel) / vector_length;
342 unroll_factor = TruncToPowerOfTwo(std::min(uf2, unroll_cnt));
343 DCHECK_GE(unroll_factor, 1u);
344 }
345
346 return unroll_factor;
347 }
348 };
349
GetUnrollingFactor(HLoopInformation * loop_info,HBasicBlock * header) const350 uint32_t X86_64LoopHelper::GetUnrollingFactor(HLoopInformation* loop_info,
351 HBasicBlock* header) const {
352 uint32_t num_inst = 0, num_inst_header = 0, num_inst_loop_body = 0;
353 for (HBlocksInLoopIterator it(*loop_info); !it.Done(); it.Advance()) {
354 HBasicBlock* block = it.Current();
355 DCHECK(block);
356 num_inst = 0;
357
358 for (HInstructionIterator it1(block->GetInstructions()); !it1.Done(); it1.Advance()) {
359 HInstruction* inst = it1.Current();
360 DCHECK(inst);
361
362 // SuspendCheck inside loop is handled with Goto.
363 // Ignoring SuspendCheck & Goto as partially unrolled loop body will have only one Goto.
364 // Instruction count for Goto is being handled during unroll factor calculation below.
365 if (inst->IsSuspendCheck() || inst->IsGoto()) {
366 continue;
367 }
368
369 num_inst += GetMachineInstructionCount(inst);
370 }
371
372 if (block == header) {
373 num_inst_header = num_inst;
374 } else {
375 num_inst_loop_body += num_inst;
376 }
377 }
378
379 // Calculate actual unroll factor.
380 uint32_t unrolling_factor = kX86_64MaxUnrollFactor;
381 uint32_t unrolling_inst = kX86_64UnrolledMaxBodySizeInstr;
382 // "-3" for one Goto instruction.
383 uint32_t desired_size = unrolling_inst - num_inst_header - 3;
384 if (desired_size < (2 * num_inst_loop_body)) {
385 return 1;
386 }
387
388 while (unrolling_factor > 0) {
389 if ((desired_size >> unrolling_factor) >= num_inst_loop_body) {
390 break;
391 }
392 unrolling_factor--;
393 }
394
395 return (1 << unrolling_factor);
396 }
397
Create(InstructionSet isa,ArenaAllocator * allocator)398 ArchNoOptsLoopHelper* ArchNoOptsLoopHelper::Create(InstructionSet isa,
399 ArenaAllocator* allocator) {
400 switch (isa) {
401 case InstructionSet::kArm64: {
402 return new (allocator) Arm64LoopHelper;
403 }
404 case InstructionSet::kX86_64: {
405 return new (allocator) X86_64LoopHelper;
406 }
407 default: {
408 return new (allocator) ArchDefaultLoopHelper;
409 }
410 }
411 }
412
413 } // namespace art
414