1 /*
2  * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <interrupt_mgmt.h>
14 #include <platform.h>
15 #include <platform_def.h>
16 #include <pubsub_events.h>
17 #include <smcc_helpers.h>
18 #include <string.h>
19 #include <utils.h>
20 
21 
22 /*******************************************************************************
23  * Context management library initialisation routine. This library is used by
24  * runtime services to share pointers to 'cpu_context' structures for the secure
25  * and non-secure states. Management of the structures and their associated
26  * memory is not done by the context management library e.g. the PSCI service
27  * manages the cpu context used for entry from and exit to the non-secure state.
28  * The Secure payload dispatcher service manages the context(s) corresponding to
29  * the secure state. It also uses this library to get access to the non-secure
30  * state cpu context pointers.
31  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
32  * which will used for programming an entry into a lower EL. The same context
33  * will used to save state upon exception entry from that EL.
34  ******************************************************************************/
cm_init(void)35 void cm_init(void)
36 {
37 	/*
38 	 * The context management library has only global data to intialize, but
39 	 * that will be done when the BSS is zeroed out
40 	 */
41 }
42 
43 /*******************************************************************************
44  * The following function initializes the cpu_context 'ctx' for
45  * first use, and sets the initial entrypoint state as specified by the
46  * entry_point_info structure.
47  *
48  * The security state to initialize is determined by the SECURE attribute
49  * of the entry_point_info. The function returns a pointer to the initialized
50  * context and sets this as the next context to return to.
51  *
52  * The EE and ST attributes are used to configure the endianess and secure
53  * timer availability for the new execution context.
54  *
55  * To prepare the register state for entry call cm_prepare_el3_exit() and
56  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
57  * cm_e1_sysreg_context_restore().
58  ******************************************************************************/
cm_init_context_common(cpu_context_t * ctx,const entry_point_info_t * ep)59 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
60 {
61 	unsigned int security_state;
62 	uint32_t scr_el3, pmcr_el0;
63 	el3_state_t *state;
64 	gp_regs_t *gp_regs;
65 	unsigned long sctlr_elx;
66 
67 	assert(ctx);
68 
69 	security_state = GET_SECURITY_STATE(ep->h.attr);
70 
71 	/* Clear any residual register values from the context */
72 	zeromem(ctx, sizeof(*ctx));
73 
74 	/*
75 	 * SCR_EL3 was initialised during reset sequence in macro
76 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
77 	 * affect the next EL.
78 	 *
79 	 * The following fields are initially set to zero and then updated to
80 	 * the required value depending on the state of the SPSR_EL3 and the
81 	 * Security state and entrypoint attributes of the next EL.
82 	 */
83 	scr_el3 = read_scr();
84 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
85 			SCR_ST_BIT | SCR_HCE_BIT);
86 	/*
87 	 * SCR_NS: Set the security state of the next EL.
88 	 */
89 	if (security_state != SECURE)
90 		scr_el3 |= SCR_NS_BIT;
91 	/*
92 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
93 	 *  Exception level as specified by SPSR.
94 	 */
95 	if (GET_RW(ep->spsr) == MODE_RW_64)
96 		scr_el3 |= SCR_RW_BIT;
97 	/*
98 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
99 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
100 	 *  by the entrypoint attributes.
101 	 */
102 	if (EP_GET_ST(ep->h.attr))
103 		scr_el3 |= SCR_ST_BIT;
104 
105 #ifndef HANDLE_EA_EL3_FIRST
106 	/*
107 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
108 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
109 	 *  Aborts are taken to EL3.
110 	 */
111 	scr_el3 &= ~SCR_EA_BIT;
112 #endif
113 
114 #ifdef IMAGE_BL31
115 	/*
116 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
117 	 *  indicated by the interrupt routing model for BL31.
118 	 */
119 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
120 #endif
121 
122 	/*
123 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
124 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
125 	 * next mode is Hyp.
126 	 */
127 	if ((GET_RW(ep->spsr) == MODE_RW_64
128 	     && GET_EL(ep->spsr) == MODE_EL2)
129 	    || (GET_RW(ep->spsr) != MODE_RW_64
130 		&& GET_M32(ep->spsr) == MODE32_hyp)) {
131 		scr_el3 |= SCR_HCE_BIT;
132 	}
133 
134 	/*
135 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
136 	 * execution state setting all fields rather than relying of the hw.
137 	 * Some fields have architecturally UNKNOWN reset values and these are
138 	 * set to zero.
139 	 *
140 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
141 	 *
142 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
143 	 *  required by PSCI specification)
144 	 */
145 	sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
146 	if (GET_RW(ep->spsr) == MODE_RW_64)
147 		sctlr_elx |= SCTLR_EL1_RES1;
148 	else {
149 		/*
150 		 * If the target execution state is AArch32 then the following
151 		 * fields need to be set.
152 		 *
153 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
154 		 *  instructions are not trapped to EL1.
155 		 *
156 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
157 		 *  instructions are not trapped to EL1.
158 		 *
159 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
160 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
161 		 */
162 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
163 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
164 	}
165 
166 	/*
167 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
168 	 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
169 	 * are not part of the stored cpu_context.
170 	 */
171 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
172 
173 	if (security_state == SECURE) {
174 		/*
175 		 * Initialise PMCR_EL0 for secure context only, setting all
176 		 * fields rather than relying on hw. Some fields are
177 		 * architecturally UNKNOWN on reset.
178 		 *
179 		 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
180 		 *  is recorded in PMOVSCLR_EL0[31], occurs on the increment
181 		 *  that changes PMCCNTR_EL0[63] from 1 to 0.
182 		 *
183 		 * PMCR_EL0.DP: Set to one so that the cycle counter,
184 		 *  PMCCNTR_EL0 does not count when event counting is prohibited.
185 		 *
186 		 * PMCR_EL0.X: Set to zero to disable export of events.
187 		 *
188 		 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
189 		 *  counts on every clock cycle.
190 		 */
191 		pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
192 				| PMCR_EL0_DP_BIT)
193 				& ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
194 		write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
195 	}
196 
197 	/* Populate EL3 state so that we've the right context before doing ERET */
198 	state = get_el3state_ctx(ctx);
199 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
200 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
201 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
202 
203 	/*
204 	 * Store the X0-X7 value from the entrypoint into the context
205 	 * Use memcpy as we are in control of the layout of the structures
206 	 */
207 	gp_regs = get_gpregs_ctx(ctx);
208 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
209 }
210 
211 /*******************************************************************************
212  * The following function initializes the cpu_context for a CPU specified by
213  * its `cpu_idx` for first use, and sets the initial entrypoint state as
214  * specified by the entry_point_info structure.
215  ******************************************************************************/
cm_init_context_by_index(unsigned int cpu_idx,const entry_point_info_t * ep)216 void cm_init_context_by_index(unsigned int cpu_idx,
217 			      const entry_point_info_t *ep)
218 {
219 	cpu_context_t *ctx;
220 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
221 	cm_init_context_common(ctx, ep);
222 }
223 
224 /*******************************************************************************
225  * The following function initializes the cpu_context for the current CPU
226  * for first use, and sets the initial entrypoint state as specified by the
227  * entry_point_info structure.
228  ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)229 void cm_init_my_context(const entry_point_info_t *ep)
230 {
231 	cpu_context_t *ctx;
232 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
233 	cm_init_context_common(ctx, ep);
234 }
235 
236 /*******************************************************************************
237  * Prepare the CPU system registers for first entry into secure or normal world
238  *
239  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
240  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
241  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
242  * For all entries, the EL1 registers are initialized from the cpu_context
243  ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)244 void cm_prepare_el3_exit(uint32_t security_state)
245 {
246 	uint32_t sctlr_elx, scr_el3, mdcr_el2;
247 	cpu_context_t *ctx = cm_get_context(security_state);
248 
249 	assert(ctx);
250 
251 	if (security_state == NON_SECURE) {
252 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
253 		if (scr_el3 & SCR_HCE_BIT) {
254 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
255 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
256 						 CTX_SCTLR_EL1);
257 			sctlr_elx &= SCTLR_EE_BIT;
258 			sctlr_elx |= SCTLR_EL2_RES1;
259 			write_sctlr_el2(sctlr_elx);
260 		} else if (EL_IMPLEMENTED(2)) {
261 			/*
262 			 * EL2 present but unused, need to disable safely.
263 			 * SCTLR_EL2 can be ignored in this case.
264 			 *
265 			 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
266 			 * to zero so that Non-secure operations do not trap to
267 			 * EL2.
268 			 *
269 			 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
270 			 */
271 			write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
272 
273 			/*
274 			 * Initialise CPTR_EL2 setting all fields rather than
275 			 * relying on the hw. All fields have architecturally
276 			 * UNKNOWN reset values.
277 			 *
278 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
279 			 *  accesses to the CPACR_EL1 or CPACR from both
280 			 *  Execution states do not trap to EL2.
281 			 *
282 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
283 			 *  register accesses to the trace registers from both
284 			 *  Execution states do not trap to EL2.
285 			 *
286 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
287 			 *  to SIMD and floating-point functionality from both
288 			 *  Execution states do not trap to EL2.
289 			 */
290 			write_cptr_el2(CPTR_EL2_RESET_VAL &
291 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
292 					| CPTR_EL2_TFP_BIT));
293 
294 			/*
295 			 * Initiliase CNTHCTL_EL2. All fields are
296 			 * architecturally UNKNOWN on reset and are set to zero
297 			 * except for field(s) listed below.
298 			 *
299 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
300 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
301 			 *  physical timer registers.
302 			 *
303 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
304 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
305 			 *  physical counter registers.
306 			 */
307 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
308 						EL1PCEN_BIT | EL1PCTEN_BIT);
309 
310 			/*
311 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
312 			 * architecturally UNKNOWN value.
313 			 */
314 			write_cntvoff_el2(0);
315 
316 			/*
317 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
318 			 * MPIDR_EL1 respectively.
319 			 */
320 			write_vpidr_el2(read_midr_el1());
321 			write_vmpidr_el2(read_mpidr_el1());
322 
323 			/*
324 			 * Initialise VTTBR_EL2. All fields are architecturally
325 			 * UNKNOWN on reset.
326 			 *
327 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
328 			 *  2 address translation is disabled, cache maintenance
329 			 *  operations depend on the VMID.
330 			 *
331 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
332 			 *  translation is disabled.
333 			 */
334 			write_vttbr_el2(VTTBR_RESET_VAL &
335 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
336 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
337 
338 			/*
339 			 * Initialise MDCR_EL2, setting all fields rather than
340 			 * relying on hw. Some fields are architecturally
341 			 * UNKNOWN on reset.
342 			 *
343 			 * MDCR_EL2.TPMS (ARM v8.2): Do not trap statistical
344 			 * profiling controls to EL2.
345 			 *
346 			 * MDCR_EL2.E2PB (ARM v8.2): SPE enabled in non-secure
347 			 * state. Accesses to profiling buffer controls at
348 			 * non-secure EL1 are not trapped to EL2.
349 			 *
350 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
351 			 *  EL1 System register accesses to the Debug ROM
352 			 *  registers are not trapped to EL2.
353 			 *
354 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
355 			 *  System register accesses to the powerdown debug
356 			 *  registers are not trapped to EL2.
357 			 *
358 			 * MDCR_EL2.TDA: Set to zero so that System register
359 			 *  accesses to the debug registers do not trap to EL2.
360 			 *
361 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
362 			 *  are not routed to EL2.
363 			 *
364 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
365 			 *  Monitors.
366 			 *
367 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
368 			 *  EL1 accesses to all Performance Monitors registers
369 			 *  are not trapped to EL2.
370 			 *
371 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
372 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
373 			 *  trapped to EL2.
374 			 *
375 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
376 			 *  architecturally-defined reset value.
377 			 */
378 			mdcr_el2 = ((MDCR_EL2_RESET_VAL |
379 					((read_pmcr_el0() & PMCR_EL0_N_BITS)
380 					>> PMCR_EL0_N_SHIFT)) &
381 					~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
382 					| MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
383 					| MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
384 					| MDCR_EL2_TPMCR_BIT));
385 
386 #if ENABLE_SPE_FOR_LOWER_ELS
387 			uint64_t id_aa64dfr0_el1;
388 
389 			/* Detect if SPE is implemented */
390 			id_aa64dfr0_el1 = read_id_aa64dfr0_el1() >>
391 				ID_AA64DFR0_PMS_SHIFT;
392 			if ((id_aa64dfr0_el1 & ID_AA64DFR0_PMS_MASK) == 1) {
393 				/*
394 				 * Make sure traps to EL2 are not generated if
395 				 * EL2 is implemented but not used.
396 				 */
397 				mdcr_el2 &= ~MDCR_EL2_TPMS;
398 				mdcr_el2 |= MDCR_EL2_E2PB(MDCR_EL2_E2PB_EL1);
399 			}
400 #endif
401 
402 			write_mdcr_el2(mdcr_el2);
403 
404 			/*
405 			 * Initialise HSTR_EL2. All fields are architecturally
406 			 * UNKNOWN on reset.
407 			 *
408 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
409 			 *  Non-secure EL0 or EL1 accesses to System registers
410 			 *  do not trap to EL2.
411 			 */
412 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
413 			/*
414 			 * Initialise CNTHP_CTL_EL2. All fields are
415 			 * architecturally UNKNOWN on reset.
416 			 *
417 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
418 			 *  physical timer and prevent timer interrupts.
419 			 */
420 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
421 						~(CNTHP_CTL_ENABLE_BIT));
422 		}
423 	}
424 
425 	cm_el1_sysregs_context_restore(security_state);
426 	cm_set_next_eret_context(security_state);
427 }
428 
429 /*******************************************************************************
430  * The next four functions are used by runtime services to save and restore
431  * EL1 context on the 'cpu_context' structure for the specified security
432  * state.
433  ******************************************************************************/
cm_el1_sysregs_context_save(uint32_t security_state)434 void cm_el1_sysregs_context_save(uint32_t security_state)
435 {
436 	cpu_context_t *ctx;
437 
438 	ctx = cm_get_context(security_state);
439 	assert(ctx);
440 
441 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
442 	el1_sysregs_context_save_post_ops();
443 
444 #if IMAGE_BL31
445 	if (security_state == SECURE)
446 		PUBLISH_EVENT(cm_exited_secure_world);
447 	else
448 		PUBLISH_EVENT(cm_exited_normal_world);
449 #endif
450 }
451 
cm_el1_sysregs_context_restore(uint32_t security_state)452 void cm_el1_sysregs_context_restore(uint32_t security_state)
453 {
454 	cpu_context_t *ctx;
455 
456 	ctx = cm_get_context(security_state);
457 	assert(ctx);
458 
459 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
460 
461 #if IMAGE_BL31
462 	if (security_state == SECURE)
463 		PUBLISH_EVENT(cm_entering_secure_world);
464 	else
465 		PUBLISH_EVENT(cm_entering_normal_world);
466 #endif
467 }
468 
469 /*******************************************************************************
470  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
471  * given security state with the given entrypoint
472  ******************************************************************************/
cm_set_elr_el3(uint32_t security_state,uintptr_t entrypoint)473 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
474 {
475 	cpu_context_t *ctx;
476 	el3_state_t *state;
477 
478 	ctx = cm_get_context(security_state);
479 	assert(ctx);
480 
481 	/* Populate EL3 state so that ERET jumps to the correct entry */
482 	state = get_el3state_ctx(ctx);
483 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
484 }
485 
486 /*******************************************************************************
487  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
488  * pertaining to the given security state
489  ******************************************************************************/
cm_set_elr_spsr_el3(uint32_t security_state,uintptr_t entrypoint,uint32_t spsr)490 void cm_set_elr_spsr_el3(uint32_t security_state,
491 			uintptr_t entrypoint, uint32_t spsr)
492 {
493 	cpu_context_t *ctx;
494 	el3_state_t *state;
495 
496 	ctx = cm_get_context(security_state);
497 	assert(ctx);
498 
499 	/* Populate EL3 state so that ERET jumps to the correct entry */
500 	state = get_el3state_ctx(ctx);
501 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
502 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
503 }
504 
505 /*******************************************************************************
506  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
507  * pertaining to the given security state using the value and bit position
508  * specified in the parameters. It preserves all other bits.
509  ******************************************************************************/
cm_write_scr_el3_bit(uint32_t security_state,uint32_t bit_pos,uint32_t value)510 void cm_write_scr_el3_bit(uint32_t security_state,
511 			  uint32_t bit_pos,
512 			  uint32_t value)
513 {
514 	cpu_context_t *ctx;
515 	el3_state_t *state;
516 	uint32_t scr_el3;
517 
518 	ctx = cm_get_context(security_state);
519 	assert(ctx);
520 
521 	/* Ensure that the bit position is a valid one */
522 	assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
523 
524 	/* Ensure that the 'value' is only a bit wide */
525 	assert(value <= 1);
526 
527 	/*
528 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
529 	 * and set it to its new value.
530 	 */
531 	state = get_el3state_ctx(ctx);
532 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
533 	scr_el3 &= ~(1 << bit_pos);
534 	scr_el3 |= value << bit_pos;
535 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
536 }
537 
538 /*******************************************************************************
539  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
540  * given security state.
541  ******************************************************************************/
cm_get_scr_el3(uint32_t security_state)542 uint32_t cm_get_scr_el3(uint32_t security_state)
543 {
544 	cpu_context_t *ctx;
545 	el3_state_t *state;
546 
547 	ctx = cm_get_context(security_state);
548 	assert(ctx);
549 
550 	/* Populate EL3 state so that ERET jumps to the correct entry */
551 	state = get_el3state_ctx(ctx);
552 	return read_ctx_reg(state, CTX_SCR_EL3);
553 }
554 
555 /*******************************************************************************
556  * This function is used to program the context that's used for exception
557  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
558  * the required security state
559  ******************************************************************************/
cm_set_next_eret_context(uint32_t security_state)560 void cm_set_next_eret_context(uint32_t security_state)
561 {
562 	cpu_context_t *ctx;
563 
564 	ctx = cm_get_context(security_state);
565 	assert(ctx);
566 
567 	cm_set_next_context(ctx);
568 }
569