1 /*
2  * Copyright (c) 2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch_helpers.h>
8 #include <assert.h>
9 #include <bl_common.h>
10 #include <console.h>
11 #include <debug.h>
12 #include <dw_mmc.h>
13 #include <emmc.h>
14 #include <errno.h>
15 #include <gpio.h>
16 #include <hi6220.h>
17 #include <hi6553.h>
18 #include <mmio.h>
19 #include <pl061_gpio.h>
20 #include <platform.h>
21 #include <platform_def.h>
22 #include <sp804_delay_timer.h>
23 #include <string.h>
24 #include <tbbr/tbbr_img_desc.h>
25 
26 #include "../../bl1/bl1_private.h"
27 #include "hikey_def.h"
28 #include "hikey_private.h"
29 
30 /*
31  * Declarations of linker defined symbols which will help us find the layout
32  * of trusted RAM
33  */
34 extern unsigned long __COHERENT_RAM_START__;
35 extern unsigned long __COHERENT_RAM_END__;
36 
37 /*
38  * The next 2 constants identify the extents of the coherent memory region.
39  * These addresses are used by the MMU setup code and therefore they must be
40  * page-aligned.  It is the responsibility of the linker script to ensure that
41  * __COHERENT_RAM_START__ and __COHERENT_RAM_END__ linker symbols refer to
42  * page-aligned addresses.
43  */
44 #define BL1_COHERENT_RAM_BASE (unsigned long)(&__COHERENT_RAM_START__)
45 #define BL1_COHERENT_RAM_LIMIT (unsigned long)(&__COHERENT_RAM_END__)
46 
47 /* Data structure which holds the extents of the trusted RAM for BL1 */
48 static meminfo_t bl1_tzram_layout;
49 
50 enum {
51 	BOOT_NORMAL = 0,
52 	BOOT_USB_DOWNLOAD,
53 	BOOT_UART_DOWNLOAD,
54 };
55 
bl1_plat_sec_mem_layout(void)56 meminfo_t *bl1_plat_sec_mem_layout(void)
57 {
58 	return &bl1_tzram_layout;
59 }
60 
61 #if LOAD_IMAGE_V2
62 /*******************************************************************************
63  * Function that takes a memory layout into which BL2 has been loaded and
64  * populates a new memory layout for BL2 that ensures that BL1's data sections
65  * resident in secure RAM are not visible to BL2.
66  ******************************************************************************/
bl1_init_bl2_mem_layout(const meminfo_t * bl1_mem_layout,meminfo_t * bl2_mem_layout)67 void bl1_init_bl2_mem_layout(const meminfo_t *bl1_mem_layout,
68 			     meminfo_t *bl2_mem_layout)
69 {
70 
71 	assert(bl1_mem_layout != NULL);
72 	assert(bl2_mem_layout != NULL);
73 
74 	/*
75 	 * Cannot remove BL1 RW data from the scope of memory visible to BL2
76 	 * like arm platforms because they overlap in hikey
77 	 */
78 	bl2_mem_layout->total_base = BL2_BASE;
79 	bl2_mem_layout->total_size = BL32_SRAM_LIMIT - BL2_BASE;
80 
81 	flush_dcache_range((unsigned long)bl2_mem_layout, sizeof(meminfo_t));
82 }
83 #endif /* LOAD_IMAGE_V2 */
84 
85 /*
86  * Perform any BL1 specific platform actions.
87  */
bl1_early_platform_setup(void)88 void bl1_early_platform_setup(void)
89 {
90 	/* Initialize the console to provide early debug support */
91 	console_init(CONSOLE_BASE, PL011_UART_CLK_IN_HZ, PL011_BAUDRATE);
92 
93 	/* Allow BL1 to see the whole Trusted RAM */
94 	bl1_tzram_layout.total_base = BL1_RW_BASE;
95 	bl1_tzram_layout.total_size = BL1_RW_SIZE;
96 
97 #if !LOAD_IMAGE_V2
98 	/* Calculate how much RAM BL1 is using and how much remains free */
99 	bl1_tzram_layout.free_base = BL1_RW_BASE;
100 	bl1_tzram_layout.free_size = BL1_RW_SIZE;
101 	reserve_mem(&bl1_tzram_layout.free_base,
102 		    &bl1_tzram_layout.free_size,
103 		    BL1_RAM_BASE,
104 		    BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */
105 #endif
106 
107 	INFO("BL1: 0x%lx - 0x%lx [size = %lu]\n", BL1_RAM_BASE, BL1_RAM_LIMIT,
108 	     BL1_RAM_LIMIT - BL1_RAM_BASE); /* bl1_size */
109 }
110 
111 /*
112  * Perform the very early platform specific architecture setup here. At the
113  * moment this only does basic initialization. Later architectural setup
114  * (bl1_arch_setup()) does not do anything platform specific.
115  */
bl1_plat_arch_setup(void)116 void bl1_plat_arch_setup(void)
117 {
118 	hikey_init_mmu_el3(bl1_tzram_layout.total_base,
119 			   bl1_tzram_layout.total_size,
120 			   BL1_RO_BASE,
121 			   BL1_RO_LIMIT,
122 			   BL1_COHERENT_RAM_BASE,
123 			   BL1_COHERENT_RAM_LIMIT);
124 }
125 
hikey_sp804_init(void)126 static void hikey_sp804_init(void)
127 {
128 	uint32_t data;
129 
130 	/* select the clock of dual timer0 */
131 	data = mmio_read_32(AO_SC_TIMER_EN0);
132 	while (data & 3) {
133 		data &= ~3;
134 		data |= 3 << 16;
135 		mmio_write_32(AO_SC_TIMER_EN0, data);
136 		data = mmio_read_32(AO_SC_TIMER_EN0);
137 	}
138 	/* enable the pclk of dual timer0 */
139 	data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4);
140 	while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0)) {
141 		mmio_write_32(AO_SC_PERIPH_CLKEN4, PCLK_TIMER1 | PCLK_TIMER0);
142 		data = mmio_read_32(AO_SC_PERIPH_CLKSTAT4);
143 	}
144 	/* reset dual timer0 */
145 	data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
146 	mmio_write_32(AO_SC_PERIPH_RSTEN4, PCLK_TIMER1 | PCLK_TIMER0);
147 	do {
148 		data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
149 	} while (!(data & PCLK_TIMER1) || !(data & PCLK_TIMER0));
150 	/* unreset dual timer0 */
151 	mmio_write_32(AO_SC_PERIPH_RSTDIS4, PCLK_TIMER1 | PCLK_TIMER0);
152 	do {
153 		data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
154 	} while ((data & PCLK_TIMER1) || (data & PCLK_TIMER0));
155 
156 	sp804_timer_init(SP804_TIMER0_BASE, 10, 192);
157 }
158 
hikey_gpio_init(void)159 static void hikey_gpio_init(void)
160 {
161 	pl061_gpio_init();
162 	pl061_gpio_register(GPIO0_BASE, 0);
163 	pl061_gpio_register(GPIO1_BASE, 1);
164 	pl061_gpio_register(GPIO2_BASE, 2);
165 	pl061_gpio_register(GPIO3_BASE, 3);
166 	pl061_gpio_register(GPIO4_BASE, 4);
167 	pl061_gpio_register(GPIO5_BASE, 5);
168 	pl061_gpio_register(GPIO6_BASE, 6);
169 	pl061_gpio_register(GPIO7_BASE, 7);
170 	pl061_gpio_register(GPIO8_BASE, 8);
171 	pl061_gpio_register(GPIO9_BASE, 9);
172 	pl061_gpio_register(GPIO10_BASE, 10);
173 	pl061_gpio_register(GPIO11_BASE, 11);
174 	pl061_gpio_register(GPIO12_BASE, 12);
175 	pl061_gpio_register(GPIO13_BASE, 13);
176 	pl061_gpio_register(GPIO14_BASE, 14);
177 	pl061_gpio_register(GPIO15_BASE, 15);
178 	pl061_gpio_register(GPIO16_BASE, 16);
179 	pl061_gpio_register(GPIO17_BASE, 17);
180 	pl061_gpio_register(GPIO18_BASE, 18);
181 	pl061_gpio_register(GPIO19_BASE, 19);
182 
183 	/* Power on indicator LED (USER_LED1). */
184 	gpio_set_direction(32, GPIO_DIR_OUT);	/* LED1 */
185 	gpio_set_value(32, GPIO_LEVEL_HIGH);
186 	gpio_set_direction(33, GPIO_DIR_OUT);	/* LED2 */
187 	gpio_set_value(33, GPIO_LEVEL_LOW);
188 	gpio_set_direction(34, GPIO_DIR_OUT);	/* LED3 */
189 	gpio_set_direction(35, GPIO_DIR_OUT);	/* LED4 */
190 }
191 
hikey_pmussi_init(void)192 static void hikey_pmussi_init(void)
193 {
194 	uint32_t data;
195 
196 	/* Initialize PWR_HOLD GPIO */
197 	gpio_set_direction(0, GPIO_DIR_OUT);
198 	gpio_set_value(0, GPIO_LEVEL_LOW);
199 
200 	/*
201 	 * After reset, PMUSSI stays in reset mode.
202 	 * Now make it out of reset.
203 	 */
204 	mmio_write_32(AO_SC_PERIPH_RSTDIS4,
205 		      AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N);
206 	do {
207 		data = mmio_read_32(AO_SC_PERIPH_RSTSTAT4);
208 	} while (data & AO_SC_PERIPH_RSTDIS4_PRESET_PMUSSI_N);
209 
210 	/* Set PMUSSI clock latency for read operation. */
211 	data = mmio_read_32(AO_SC_MCU_SUBSYS_CTRL3);
212 	data &= ~AO_SC_MCU_SUBSYS_CTRL3_RCLK_MASK;
213 	data |= AO_SC_MCU_SUBSYS_CTRL3_RCLK_3;
214 	mmio_write_32(AO_SC_MCU_SUBSYS_CTRL3, data);
215 
216 	/* enable PMUSSI clock */
217 	data = AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_CCPU |
218 	       AO_SC_PERIPH_CLKEN5_PCLK_PMUSSI_MCU;
219 	mmio_write_32(AO_SC_PERIPH_CLKEN5, data);
220 	data = AO_SC_PERIPH_CLKEN4_PCLK_PMUSSI;
221 	mmio_write_32(AO_SC_PERIPH_CLKEN4, data);
222 
223 	gpio_set_value(0, GPIO_LEVEL_HIGH);
224 }
225 
hikey_hi6553_init(void)226 static void hikey_hi6553_init(void)
227 {
228 	uint8_t data;
229 
230 	mmio_write_8(HI6553_PERI_EN_MARK, 0x1e);
231 	mmio_write_8(HI6553_NP_REG_ADJ1, 0);
232 	data = DISABLE6_XO_CLK_CONN | DISABLE6_XO_CLK_NFC |
233 		DISABLE6_XO_CLK_RF1 | DISABLE6_XO_CLK_RF2;
234 	mmio_write_8(HI6553_DISABLE6_XO_CLK, data);
235 
236 	/* configure BUCK0 & BUCK1 */
237 	mmio_write_8(HI6553_BUCK01_CTRL2, 0x5e);
238 	mmio_write_8(HI6553_BUCK0_CTRL7, 0x10);
239 	mmio_write_8(HI6553_BUCK1_CTRL7, 0x10);
240 	mmio_write_8(HI6553_BUCK0_CTRL5, 0x1e);
241 	mmio_write_8(HI6553_BUCK1_CTRL5, 0x1e);
242 	mmio_write_8(HI6553_BUCK0_CTRL1, 0xfc);
243 	mmio_write_8(HI6553_BUCK1_CTRL1, 0xfc);
244 
245 	/* configure BUCK2 */
246 	mmio_write_8(HI6553_BUCK2_REG1, 0x4f);
247 	mmio_write_8(HI6553_BUCK2_REG5, 0x99);
248 	mmio_write_8(HI6553_BUCK2_REG6, 0x45);
249 	mdelay(1);
250 	mmio_write_8(HI6553_VSET_BUCK2_ADJ, 0x22);
251 	mdelay(1);
252 
253 	/* configure BUCK3 */
254 	mmio_write_8(HI6553_BUCK3_REG3, 0x02);
255 	mmio_write_8(HI6553_BUCK3_REG5, 0x99);
256 	mmio_write_8(HI6553_BUCK3_REG6, 0x41);
257 	mmio_write_8(HI6553_VSET_BUCK3_ADJ, 0x02);
258 	mdelay(1);
259 
260 	/* configure BUCK4 */
261 	mmio_write_8(HI6553_BUCK4_REG2, 0x9a);
262 	mmio_write_8(HI6553_BUCK4_REG5, 0x99);
263 	mmio_write_8(HI6553_BUCK4_REG6, 0x45);
264 
265 	/* configure LDO20 */
266 	mmio_write_8(HI6553_LDO20_REG_ADJ, 0x50);
267 
268 	mmio_write_8(HI6553_NP_REG_CHG, 0x0f);
269 	mmio_write_8(HI6553_CLK_TOP0, 0x06);
270 	mmio_write_8(HI6553_CLK_TOP3, 0xc0);
271 	mmio_write_8(HI6553_CLK_TOP4, 0x00);
272 
273 	/* configure LDO7 & LDO10 for SD slot */
274 	/* enable LDO7 */
275 	data = mmio_read_8(HI6553_LDO7_REG_ADJ);
276 	data = (data & 0xf8) | 0x2;
277 	mmio_write_8(HI6553_LDO7_REG_ADJ, data);
278 	mdelay(5);
279 	mmio_write_8(HI6553_ENABLE2_LDO1_8, 1 << 6);
280 	mdelay(5);
281 	/* enable LDO10 */
282 	data = mmio_read_8(HI6553_LDO10_REG_ADJ);
283 	data = (data & 0xf8) | 0x5;
284 	mmio_write_8(HI6553_LDO10_REG_ADJ, data);
285 	mdelay(5);
286 	mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 1);
287 	mdelay(5);
288 	/* enable LDO15 */
289 	data = mmio_read_8(HI6553_LDO15_REG_ADJ);
290 	data = (data & 0xf8) | 0x4;
291 	mmio_write_8(HI6553_LDO15_REG_ADJ, data);
292 	mmio_write_8(HI6553_ENABLE3_LDO9_16, 1 << 6);
293 	mdelay(5);
294 	/* enable LDO19 */
295 	data = mmio_read_8(HI6553_LDO19_REG_ADJ);
296 	data |= 0x7;
297 	mmio_write_8(HI6553_LDO19_REG_ADJ, data);
298 	mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 2);
299 	mdelay(5);
300 	/* enable LDO21 */
301 	data = mmio_read_8(HI6553_LDO21_REG_ADJ);
302 	data = (data & 0xf8) | 0x3;
303 	mmio_write_8(HI6553_LDO21_REG_ADJ, data);
304 	mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 4);
305 	mdelay(5);
306 	/* enable LDO22 */
307 	data = mmio_read_8(HI6553_LDO22_REG_ADJ);
308 	data = (data & 0xf8) | 0x7;
309 	mmio_write_8(HI6553_LDO22_REG_ADJ, data);
310 	mmio_write_8(HI6553_ENABLE4_LDO17_22, 1 << 5);
311 	mdelay(5);
312 
313 	/* select 32.764KHz */
314 	mmio_write_8(HI6553_CLK19M2_600_586_EN, 0x01);
315 
316 	/* Disable vbus_det interrupts */
317 	data = mmio_read_8(HI6553_IRQ2_MASK);
318 	data = data | 0x3;
319 	mmio_write_8(HI6553_IRQ2_MASK, data);
320 }
321 
init_mmc0_pll(void)322 static void init_mmc0_pll(void)
323 {
324 	unsigned int data;
325 
326 	/* select SYSPLL as the source of MMC0 */
327 	/* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */
328 	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 5 | 1 << 21);
329 	do {
330 		data = mmio_read_32(PERI_SC_CLK_SEL0);
331 	} while (!(data & (1 << 5)));
332 	/* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */
333 	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 29);
334 	do {
335 		data = mmio_read_32(PERI_SC_CLK_SEL0);
336 	} while (data & (1 << 13));
337 
338 	mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 0));
339 	do {
340 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
341 	} while (!(data & (1 << 0)));
342 
343 	data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
344 	data |= 1 << 1;
345 	mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
346 
347 	do {
348 		mmio_write_32(PERI_SC_CLKCFG8BIT1, (1 << 7) | 0xb);
349 		data = mmio_read_32(PERI_SC_CLKCFG8BIT1);
350 	} while ((data & 0xb) != 0xb);
351 }
352 
reset_mmc0_clk(void)353 static void reset_mmc0_clk(void)
354 {
355 	unsigned int data;
356 
357 	/* disable mmc0 bus clock */
358 	mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC0);
359 	do {
360 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
361 	} while (data & PERI_CLK0_MMC0);
362 	/* enable mmc0 bus clock */
363 	mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC0);
364 	do {
365 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
366 	} while (!(data & PERI_CLK0_MMC0));
367 	/* reset mmc0 clock domain */
368 	mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC0);
369 
370 	/* bypass mmc0 clock phase */
371 	data = mmio_read_32(PERI_SC_PERIPH_CTRL2);
372 	data |= 3;
373 	mmio_write_32(PERI_SC_PERIPH_CTRL2, data);
374 
375 	/* disable low power */
376 	data = mmio_read_32(PERI_SC_PERIPH_CTRL13);
377 	data |= 1 << 3;
378 	mmio_write_32(PERI_SC_PERIPH_CTRL13, data);
379 	do {
380 		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
381 	} while (!(data & PERI_RST0_MMC0));
382 
383 	/* unreset mmc0 clock domain */
384 	mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC0);
385 	do {
386 		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
387 	} while (data & PERI_RST0_MMC0);
388 }
389 
init_media_clk(void)390 static void init_media_clk(void)
391 {
392 	unsigned int data, value;
393 
394 	data = mmio_read_32(PMCTRL_MEDPLLCTRL);
395 	data |= 1;
396 	mmio_write_32(PMCTRL_MEDPLLCTRL, data);
397 
398 	for (;;) {
399 		data = mmio_read_32(PMCTRL_MEDPLLCTRL);
400 		value = 1 << 28;
401 		if ((data & value) == value)
402 			break;
403 	}
404 
405 	data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
406 	data = 1 << 10;
407 	mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
408 }
409 
init_mmc1_pll(void)410 static void init_mmc1_pll(void)
411 {
412 	uint32_t data;
413 
414 	/* select SYSPLL as the source of MMC1 */
415 	/* select SYSPLL as the source of MUX1 (SC_CLK_SEL0) */
416 	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 11 | 1 << 27);
417 	do {
418 		data = mmio_read_32(PERI_SC_CLK_SEL0);
419 	} while (!(data & (1 << 11)));
420 	/* select MUX1 as the source of MUX2 (SC_CLK_SEL0) */
421 	mmio_write_32(PERI_SC_CLK_SEL0, 1 << 30);
422 	do {
423 		data = mmio_read_32(PERI_SC_CLK_SEL0);
424 	} while (data & (1 << 14));
425 
426 	mmio_write_32(PERI_SC_PERIPH_CLKEN0, (1 << 1));
427 	do {
428 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
429 	} while (!(data & (1 << 1)));
430 
431 	data = mmio_read_32(PERI_SC_PERIPH_CLKEN12);
432 	data |= 1 << 2;
433 	mmio_write_32(PERI_SC_PERIPH_CLKEN12, data);
434 
435 	do {
436 		/* 1.2GHz / 50 = 24MHz */
437 		mmio_write_32(PERI_SC_CLKCFG8BIT2, 0x31 | (1 << 7));
438 		data = mmio_read_32(PERI_SC_CLKCFG8BIT2);
439 	} while ((data & 0x31) != 0x31);
440 }
441 
reset_mmc1_clk(void)442 static void reset_mmc1_clk(void)
443 {
444 	unsigned int data;
445 
446 	/* disable mmc1 bus clock */
447 	mmio_write_32(PERI_SC_PERIPH_CLKDIS0, PERI_CLK0_MMC1);
448 	do {
449 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
450 	} while (data & PERI_CLK0_MMC1);
451 	/* enable mmc1 bus clock */
452 	mmio_write_32(PERI_SC_PERIPH_CLKEN0, PERI_CLK0_MMC1);
453 	do {
454 		data = mmio_read_32(PERI_SC_PERIPH_CLKSTAT0);
455 	} while (!(data & PERI_CLK0_MMC1));
456 	/* reset mmc1 clock domain */
457 	mmio_write_32(PERI_SC_PERIPH_RSTEN0, PERI_RST0_MMC1);
458 
459 	/* bypass mmc1 clock phase */
460 	data = mmio_read_32(PERI_SC_PERIPH_CTRL2);
461 	data |= 3 << 2;
462 	mmio_write_32(PERI_SC_PERIPH_CTRL2, data);
463 
464 	/* disable low power */
465 	data = mmio_read_32(PERI_SC_PERIPH_CTRL13);
466 	data |= 1 << 4;
467 	mmio_write_32(PERI_SC_PERIPH_CTRL13, data);
468 	do {
469 		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
470 	} while (!(data & PERI_RST0_MMC1));
471 
472 	/* unreset mmc0 clock domain */
473 	mmio_write_32(PERI_SC_PERIPH_RSTDIS0, PERI_RST0_MMC1);
474 	do {
475 		data = mmio_read_32(PERI_SC_PERIPH_RSTSTAT0);
476 	} while (data & PERI_RST0_MMC1);
477 }
478 
479 /* Initialize PLL of both eMMC and SD controllers. */
hikey_mmc_pll_init(void)480 static void hikey_mmc_pll_init(void)
481 {
482 	init_mmc0_pll();
483 	reset_mmc0_clk();
484 	init_media_clk();
485 
486 	dsb();
487 
488 	init_mmc1_pll();
489 	reset_mmc1_clk();
490 }
491 
hikey_rtc_init(void)492 static void hikey_rtc_init(void)
493 {
494 	uint32_t data;
495 
496 	data = mmio_read_32(AO_SC_PERIPH_CLKEN4);
497 	data |= AO_SC_PERIPH_RSTDIS4_RESET_RTC0_N;
498 	mmio_write_32(AO_SC_PERIPH_CLKEN4, data);
499 }
500 
501 /*
502  * Function which will perform any remaining platform-specific setup that can
503  * occur after the MMU and data cache have been enabled.
504  */
bl1_platform_setup(void)505 void bl1_platform_setup(void)
506 {
507 	dw_mmc_params_t params;
508 
509 	assert((HIKEY_BL1_MMC_DESC_BASE >= SRAM_BASE) &&
510 	       ((SRAM_BASE + SRAM_SIZE) >=
511 		(HIKEY_BL1_MMC_DATA_BASE + HIKEY_BL1_MMC_DATA_SIZE)));
512 	hikey_sp804_init();
513 	hikey_gpio_init();
514 	hikey_pmussi_init();
515 	hikey_hi6553_init();
516 
517 	hikey_rtc_init();
518 
519 	hikey_mmc_pll_init();
520 
521 	memset(&params, 0, sizeof(dw_mmc_params_t));
522 	params.reg_base = DWMMC0_BASE;
523 	params.desc_base = HIKEY_BL1_MMC_DESC_BASE;
524 	params.desc_size = 1 << 20;
525 	params.clk_rate = 24 * 1000 * 1000;
526 	params.bus_width = EMMC_BUS_WIDTH_8;
527 	params.flags = EMMC_FLAG_CMD23;
528 	dw_mmc_init(&params);
529 
530 	hikey_io_setup();
531 }
532 
533 /*
534  * The following function checks if Firmware update is needed,
535  * by checking if TOC in FIP image is valid or not.
536  */
bl1_plat_get_next_image_id(void)537 unsigned int bl1_plat_get_next_image_id(void)
538 {
539 	int32_t boot_mode;
540 	unsigned int ret;
541 
542 	boot_mode = mmio_read_32(ONCHIPROM_PARAM_BASE);
543 	switch (boot_mode) {
544 	case BOOT_NORMAL:
545 		ret = BL2_IMAGE_ID;
546 		break;
547 	case BOOT_USB_DOWNLOAD:
548 	case BOOT_UART_DOWNLOAD:
549 		ret = NS_BL1U_IMAGE_ID;
550 		break;
551 	default:
552 		WARN("Invalid boot mode is found:%d\n", boot_mode);
553 		panic();
554 	}
555 	return ret;
556 }
557 
bl1_plat_get_image_desc(unsigned int image_id)558 image_desc_t *bl1_plat_get_image_desc(unsigned int image_id)
559 {
560 	unsigned int index = 0;
561 
562 	while (bl1_tbbr_image_descs[index].image_id != INVALID_IMAGE_ID) {
563 		if (bl1_tbbr_image_descs[index].image_id == image_id)
564 			return &bl1_tbbr_image_descs[index];
565 
566 		index++;
567 	}
568 
569 	return NULL;
570 }
571 
bl1_plat_set_ep_info(unsigned int image_id,entry_point_info_t * ep_info)572 void bl1_plat_set_ep_info(unsigned int image_id,
573 		entry_point_info_t *ep_info)
574 {
575 	unsigned int data = 0;
576 
577 	if (image_id == BL2_IMAGE_ID)
578 		return;
579 	inv_dcache_range(NS_BL1U_BASE, NS_BL1U_SIZE);
580 	__asm__ volatile ("mrs	%0, cpacr_el1" : "=r"(data));
581 	do {
582 		data |= 3 << 20;
583 		__asm__ volatile ("msr	cpacr_el1, %0" : : "r"(data));
584 		__asm__ volatile ("mrs	%0, cpacr_el1" : "=r"(data));
585 	} while ((data & (3 << 20)) != (3 << 20));
586 	INFO("cpacr_el1:0x%x\n", data);
587 
588 	ep_info->args.arg0 = 0xffff & read_mpidr();
589 	ep_info->spsr = SPSR_64(MODE_EL1, MODE_SP_ELX,
590 				DISABLE_ALL_EXCEPTIONS);
591 }
592