1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 #include  <LibConfig.h>
13 #include  <sys/EfiCdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: k_rem_pio2.c,v 1.11 2003/01/04 23:43:03 wiz Exp $");
16 #endif
17 
18 /*
19  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
20  * double x[],y[]; int e0,nx,prec; int ipio2[];
21  *
22  * __kernel_rem_pio2 return the last three digits of N with
23  *    y = x - N*pi/2
24  * so that |y| < pi/2.
25  *
26  * The method is to compute the integer (mod 8) and fraction parts of
27  * (2/pi)*x without doing the full multiplication. In general we
28  * skip the part of the product that are known to be a huge integer (
29  * more accurately, = 0 mod 8 ). Thus the number of operations are
30  * independent of the exponent of the input.
31  *
32  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
33  *
34  * Input parameters:
35  *  x[] The input value (must be positive) is broken into nx
36  *    pieces of 24-bit integers in double precision format.
37  *    x[i] will be the i-th 24 bit of x. The scaled exponent
38  *    of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
39  *    match x's up to 24 bits.
40  *
41  *    Example of breaking a double positive z into x[0]+x[1]+x[2]:
42  *      e0 = ilogb(z)-23
43  *      z  = scalbn(z,-e0)
44  *    for i = 0,1,2
45  *      x[i] = floor(z)
46  *      z    = (z-x[i])*2**24
47  *
48  *
49  *  y[] output result in an array of double precision numbers.
50  *    The dimension of y[] is:
51  *      24-bit  precision 1
52  *      53-bit  precision 2
53  *      64-bit  precision 2
54  *      113-bit precision 3
55  *    The actual value is the sum of them. Thus for 113-bit
56  *    precison, one may have to do something like:
57  *
58  *    long double t,w,r_head, r_tail;
59  *    t = (long double)y[2] + (long double)y[1];
60  *    w = (long double)y[0];
61  *    r_head = t+w;
62  *    r_tail = w - (r_head - t);
63  *
64  *  e0  The exponent of x[0]
65  *
66  *  nx  dimension of x[]
67  *
68  *    prec  an integer indicating the precision:
69  *      0 24  bits (single)
70  *      1 53  bits (double)
71  *      2 64  bits (extended)
72  *      3 113 bits (quad)
73  *
74  *  ipio2[]
75  *    integer array, contains the (24*i)-th to (24*i+23)-th
76  *    bit of 2/pi after binary point. The corresponding
77  *    floating value is
78  *
79  *      ipio2[i] * 2^(-24(i+1)).
80  *
81  * External function:
82  *  double scalbn(), floor();
83  *
84  *
85  * Here is the description of some local variables:
86  *
87  *  jk  jk+1 is the initial number of terms of ipio2[] needed
88  *    in the computation. The recommended value is 2,3,4,
89  *    6 for single, double, extended,and quad.
90  *
91  *  jz  local integer variable indicating the number of
92  *    terms of ipio2[] used.
93  *
94  *  jx  nx - 1
95  *
96  *  jv  index for pointing to the suitable ipio2[] for the
97  *    computation. In general, we want
98  *      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
99  *    is an integer. Thus
100  *      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
101  *    Hence jv = max(0,(e0-3)/24).
102  *
103  *  jp  jp+1 is the number of terms in PIo2[] needed, jp = jk.
104  *
105  *  q[] double array with integral value, representing the
106  *    24-bits chunk of the product of x and 2/pi.
107  *
108  *  q0  the corresponding exponent of q[0]. Note that the
109  *    exponent for q[i] would be q0-24*i.
110  *
111  *  PIo2[]  double precision array, obtained by cutting pi/2
112  *    into 24 bits chunks.
113  *
114  *  f[] ipio2[] in floating point
115  *
116  *  iq[]  integer array by breaking up q[] in 24-bits chunk.
117  *
118  *  fq[]  final product of x*(2/pi) in fq[0],..,fq[jk]
119  *
120  *  ih  integer. If >0 it indicates q[] is >= 0.5, hence
121  *    it also indicates the *sign* of the result.
122  *
123  */
124 
125 
126 /*
127  * Constants:
128  * The hexadecimal values are the intended ones for the following
129  * constants. The decimal values may be used, provided that the
130  * compiler will convert from decimal to binary accurately enough
131  * to produce the hexadecimal values shown.
132  */
133 
134 #include "math.h"
135 #include "math_private.h"
136 
137 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
138 
139 static const double PIo2[] = {
140   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
141   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
142   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
143   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
144   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
145   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
146   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
147   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
148 };
149 
150 static const double
151 zero   = 0.0,
152 one    = 1.0,
153 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
154 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
155 
156 int
__kernel_rem_pio2(double * x,double * y,int e0,int nx,int prec,const int32_t * ipio2)157 __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int32_t *ipio2)
158 {
159   int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
160   double z,fw,f[20],fq[20],q[20];
161 
162     /* initialize jk*/
163   jk = init_jk[prec];
164   jp = jk;
165 
166     /* determine jx,jv,q0, note that 3>q0 */
167   jx =  nx-1;
168   jv = (e0-3)/24; if(jv<0) jv=0;
169   q0 =  e0-24*(jv+1);
170 
171     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
172   j = jv-jx; m = jx+jk;
173   for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
174 
175     /* compute q[0],q[1],...q[jk] */
176   for (i=0;i<=jk;i++) {
177       for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
178   }
179 
180   jz = jk;
181 recompute:
182     /* distill q[] into iq[] reversingly */
183   for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
184       fw    =  (double)((int32_t)(twon24* z));
185       iq[i] =  (int32_t)(z-two24*fw);
186       z     =  q[j-1]+fw;
187   }
188 
189     /* compute n */
190   z  = scalbn(z,q0);    /* actual value of z */
191   z -= 8.0*floor(z*0.125);    /* trim off integer >= 8 */
192   n  = (int32_t) z;
193   z -= (double)n;
194   ih = 0;
195   if(q0>0) {  /* need iq[jz-1] to determine n */
196       i  = (iq[jz-1]>>(24-q0)); n += i;
197       iq[jz-1] -= i<<(24-q0);
198       ih = iq[jz-1]>>(23-q0);
199   }
200   else if(q0==0) ih = iq[jz-1]>>23;
201   else if(z>=0.5) ih=2;
202 
203   if(ih>0) {  /* q > 0.5 */
204       n += 1; carry = 0;
205       for(i=0;i<jz ;i++) {  /* compute 1-q */
206     j = iq[i];
207     if(carry==0) {
208         if(j!=0) {
209       carry = 1; iq[i] = 0x1000000- j;
210         }
211     } else  iq[i] = 0xffffff - j;
212       }
213       if(q0>0) {    /* rare case: chance is 1 in 12 */
214           switch(q0) {
215           case 1:
216            iq[jz-1] &= 0x7fffff; break;
217         case 2:
218            iq[jz-1] &= 0x3fffff; break;
219           }
220       }
221       if(ih==2) {
222     z = one - z;
223     if(carry!=0) z -= scalbn(one,q0);
224       }
225   }
226 
227     /* check if recomputation is needed */
228   if(z==zero) {
229       j = 0;
230       for (i=jz-1;i>=jk;i--) j |= iq[i];
231       if(j==0) { /* need recomputation */
232     for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
233 
234     for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
235         f[jx+i] = (double) ipio2[jv+i];
236         for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
237         q[i] = fw;
238     }
239     jz += k;
240     goto recompute;
241       }
242   }
243 
244     /* chop off zero terms */
245   if(z==0.0) {
246       jz -= 1; q0 -= 24;
247       while(iq[jz]==0) { jz--; q0-=24;}
248   } else { /* break z into 24-bit if necessary */
249       z = scalbn(z,-q0);
250       if(z>=two24) {
251     fw = (double)((int32_t)(twon24*z));
252     iq[jz] = (int32_t)(z-two24*fw);
253     jz += 1; q0 += 24;
254     iq[jz] = (int32_t) fw;
255       } else iq[jz] = (int32_t) z ;
256   }
257 
258     /* convert integer "bit" chunk to floating-point value */
259   fw = scalbn(one,q0);
260   for(i=jz;i>=0;i--) {
261       q[i] = fw*(double)iq[i]; fw*=twon24;
262   }
263 
264     /* compute PIo2[0,...,jp]*q[jz,...,0] */
265   for(i=jz;i>=0;i--) {
266       for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
267       fq[jz-i] = fw;
268   }
269 
270     /* compress fq[] into y[] */
271   switch(prec) {
272       case 0:
273     fw = 0.0;
274     for (i=jz;i>=0;i--) fw += fq[i];
275     y[0] = (ih==0)? fw: -fw;
276     break;
277       case 1:
278       case 2:
279     fw = 0.0;
280     for (i=jz;i>=0;i--) fw += fq[i];
281     y[0] = (ih==0)? fw: -fw;
282     fw = fq[0]-fw;
283     for (i=1;i<=jz;i++) fw += fq[i];
284     y[1] = (ih==0)? fw: -fw;
285     break;
286       case 3: /* painful */
287     for (i=jz;i>0;i--) {
288         fw      = fq[i-1]+fq[i];
289         fq[i]  += fq[i-1]-fw;
290         fq[i-1] = fw;
291     }
292     for (i=jz;i>1;i--) {
293         fw      = fq[i-1]+fq[i];
294         fq[i]  += fq[i-1]-fw;
295         fq[i-1] = fw;
296     }
297     for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
298     if(ih==0) {
299         y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
300     } else {
301         y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
302     }
303   }
304   return n&7;
305 }
306