1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <fcntl.h>
18
19 #include <android-base/logging.h>
20 #include <android-base/unique_fd.h>
21 #include <cutils/properties.h>
22 #include <sys/stat.h>
23 #include <sys/sysmacros.h>
24
25 #include "hidl_return_util.h"
26 #include "hidl_struct_util.h"
27 #include "wifi_chip.h"
28 #include "wifi_status_util.h"
29
30 namespace {
31 using android::sp;
32 using android::base::unique_fd;
33 using android::hardware::hidl_string;
34 using android::hardware::hidl_vec;
35 using android::hardware::wifi::V1_0::ChipModeId;
36 using android::hardware::wifi::V1_0::IfaceType;
37 using android::hardware::wifi::V1_0::IWifiChip;
38
39 constexpr char kCpioMagic[] = "070701";
40 constexpr size_t kMaxBufferSizeBytes = 1024 * 1024 * 3;
41 constexpr uint32_t kMaxRingBufferFileAgeSeconds = 60 * 60 * 10;
42 constexpr uint32_t kMaxRingBufferFileNum = 20;
43 constexpr char kTombstoneFolderPath[] = "/data/vendor/tombstones/wifi/";
44 constexpr char kActiveWlanIfaceNameProperty[] = "wifi.active.interface";
45 constexpr char kNoActiveWlanIfaceNamePropertyValue[] = "";
46 constexpr unsigned kMaxWlanIfaces = 5;
47
48 template <typename Iface>
invalidateAndClear(std::vector<sp<Iface>> & ifaces,sp<Iface> iface)49 void invalidateAndClear(std::vector<sp<Iface>>& ifaces, sp<Iface> iface) {
50 iface->invalidate();
51 ifaces.erase(std::remove(ifaces.begin(), ifaces.end(), iface),
52 ifaces.end());
53 }
54
55 template <typename Iface>
invalidateAndClearAll(std::vector<sp<Iface>> & ifaces)56 void invalidateAndClearAll(std::vector<sp<Iface>>& ifaces) {
57 for (const auto& iface : ifaces) {
58 iface->invalidate();
59 }
60 ifaces.clear();
61 }
62
63 template <typename Iface>
getNames(std::vector<sp<Iface>> & ifaces)64 std::vector<hidl_string> getNames(std::vector<sp<Iface>>& ifaces) {
65 std::vector<hidl_string> names;
66 for (const auto& iface : ifaces) {
67 names.emplace_back(iface->getName());
68 }
69 return names;
70 }
71
72 template <typename Iface>
findUsingName(std::vector<sp<Iface>> & ifaces,const std::string & name)73 sp<Iface> findUsingName(std::vector<sp<Iface>>& ifaces,
74 const std::string& name) {
75 std::vector<hidl_string> names;
76 for (const auto& iface : ifaces) {
77 if (name == iface->getName()) {
78 return iface;
79 }
80 }
81 return nullptr;
82 }
83
getWlanIfaceName(unsigned idx)84 std::string getWlanIfaceName(unsigned idx) {
85 if (idx >= kMaxWlanIfaces) {
86 CHECK(false) << "Requested interface beyond wlan" << kMaxWlanIfaces;
87 return {};
88 }
89
90 std::array<char, PROPERTY_VALUE_MAX> buffer;
91 if (idx == 0 || idx == 1) {
92 const char* altPropName =
93 (idx == 0) ? "wifi.interface" : "wifi.concurrent.interface";
94 auto res = property_get(altPropName, buffer.data(), nullptr);
95 if (res > 0) return buffer.data();
96 }
97 std::string propName = "wifi.interface." + std::to_string(idx);
98 auto res = property_get(propName.c_str(), buffer.data(), nullptr);
99 if (res > 0) return buffer.data();
100
101 return "wlan" + std::to_string(idx);
102 }
103
104 // Returns the dedicated iface name if one is defined.
getApIfaceName()105 std::string getApIfaceName() {
106 std::array<char, PROPERTY_VALUE_MAX> buffer;
107 if (property_get("ro.vendor.wifi.sap.interface", buffer.data(), nullptr) ==
108 0) {
109 return {};
110 }
111 return buffer.data();
112 }
113
getP2pIfaceName()114 std::string getP2pIfaceName() {
115 std::array<char, PROPERTY_VALUE_MAX> buffer;
116 property_get("wifi.direct.interface", buffer.data(), "p2p0");
117 return buffer.data();
118 }
119
120 // Returns the dedicated iface name if one is defined.
getNanIfaceName()121 std::string getNanIfaceName() {
122 std::array<char, PROPERTY_VALUE_MAX> buffer;
123 if (property_get("wifi.aware.interface", buffer.data(), nullptr) == 0) {
124 return {};
125 }
126 return buffer.data();
127 }
128
setActiveWlanIfaceNameProperty(const std::string & ifname)129 void setActiveWlanIfaceNameProperty(const std::string& ifname) {
130 auto res = property_set(kActiveWlanIfaceNameProperty, ifname.data());
131 if (res != 0) {
132 PLOG(ERROR) << "Failed to set active wlan iface name property";
133 }
134 }
135
136 // delete files that meet either conditions:
137 // 1. older than a predefined time in the wifi tombstone dir.
138 // 2. Files in excess to a predefined amount, starting from the oldest ones
removeOldFilesInternal()139 bool removeOldFilesInternal() {
140 time_t now = time(0);
141 const time_t delete_files_before = now - kMaxRingBufferFileAgeSeconds;
142 std::unique_ptr<DIR, decltype(&closedir)> dir_dump(
143 opendir(kTombstoneFolderPath), closedir);
144 if (!dir_dump) {
145 PLOG(ERROR) << "Failed to open directory";
146 return false;
147 }
148 struct dirent* dp;
149 bool success = true;
150 std::list<std::pair<const time_t, std::string>> valid_files;
151 while ((dp = readdir(dir_dump.get()))) {
152 if (dp->d_type != DT_REG) {
153 continue;
154 }
155 std::string cur_file_name(dp->d_name);
156 struct stat cur_file_stat;
157 std::string cur_file_path = kTombstoneFolderPath + cur_file_name;
158 if (stat(cur_file_path.c_str(), &cur_file_stat) == -1) {
159 PLOG(ERROR) << "Failed to get file stat for " << cur_file_path;
160 success = false;
161 continue;
162 }
163 const time_t cur_file_time = cur_file_stat.st_mtime;
164 valid_files.push_back(
165 std::pair<const time_t, std::string>(cur_file_time, cur_file_path));
166 }
167 valid_files.sort(); // sort the list of files by last modified time from
168 // small to big.
169 uint32_t cur_file_count = valid_files.size();
170 for (auto cur_file : valid_files) {
171 if (cur_file_count > kMaxRingBufferFileNum ||
172 cur_file.first < delete_files_before) {
173 if (unlink(cur_file.second.c_str()) != 0) {
174 PLOG(ERROR) << "Error deleting file";
175 success = false;
176 }
177 cur_file_count--;
178 } else {
179 break;
180 }
181 }
182 return success;
183 }
184
185 // Helper function for |cpioArchiveFilesInDir|
cpioWriteHeader(int out_fd,struct stat & st,const char * file_name,size_t file_name_len)186 bool cpioWriteHeader(int out_fd, struct stat& st, const char* file_name,
187 size_t file_name_len) {
188 std::array<char, 32 * 1024> read_buf;
189 ssize_t llen =
190 sprintf(read_buf.data(),
191 "%s%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X%08X",
192 kCpioMagic, static_cast<int>(st.st_ino), st.st_mode, st.st_uid,
193 st.st_gid, static_cast<int>(st.st_nlink),
194 static_cast<int>(st.st_mtime), static_cast<int>(st.st_size),
195 major(st.st_dev), minor(st.st_dev), major(st.st_rdev),
196 minor(st.st_rdev), static_cast<uint32_t>(file_name_len), 0);
197 if (write(out_fd, read_buf.data(), llen) == -1) {
198 PLOG(ERROR) << "Error writing cpio header to file " << file_name;
199 return false;
200 }
201 if (write(out_fd, file_name, file_name_len) == -1) {
202 PLOG(ERROR) << "Error writing filename to file " << file_name;
203 return false;
204 }
205
206 // NUL Pad header up to 4 multiple bytes.
207 llen = (llen + file_name_len) % 4;
208 if (llen != 0) {
209 const uint32_t zero = 0;
210 if (write(out_fd, &zero, 4 - llen) == -1) {
211 PLOG(ERROR) << "Error padding 0s to file " << file_name;
212 return false;
213 }
214 }
215 return true;
216 }
217
218 // Helper function for |cpioArchiveFilesInDir|
cpioWriteFileContent(int fd_read,int out_fd,struct stat & st)219 size_t cpioWriteFileContent(int fd_read, int out_fd, struct stat& st) {
220 // writing content of file
221 std::array<char, 32 * 1024> read_buf;
222 ssize_t llen = st.st_size;
223 size_t n_error = 0;
224 while (llen > 0) {
225 ssize_t bytes_read = read(fd_read, read_buf.data(), read_buf.size());
226 if (bytes_read == -1) {
227 PLOG(ERROR) << "Error reading file";
228 return ++n_error;
229 }
230 llen -= bytes_read;
231 if (write(out_fd, read_buf.data(), bytes_read) == -1) {
232 PLOG(ERROR) << "Error writing data to file";
233 return ++n_error;
234 }
235 if (bytes_read == 0) { // this should never happen, but just in case
236 // to unstuck from while loop
237 PLOG(ERROR) << "Unexpected read result";
238 n_error++;
239 break;
240 }
241 }
242 llen = st.st_size % 4;
243 if (llen != 0) {
244 const uint32_t zero = 0;
245 if (write(out_fd, &zero, 4 - llen) == -1) {
246 PLOG(ERROR) << "Error padding 0s to file";
247 return ++n_error;
248 }
249 }
250 return n_error;
251 }
252
253 // Helper function for |cpioArchiveFilesInDir|
cpioWriteFileTrailer(int out_fd)254 bool cpioWriteFileTrailer(int out_fd) {
255 std::array<char, 4096> read_buf;
256 read_buf.fill(0);
257 if (write(out_fd, read_buf.data(),
258 sprintf(read_buf.data(), "070701%040X%056X%08XTRAILER!!!", 1,
259 0x0b, 0) +
260 4) == -1) {
261 PLOG(ERROR) << "Error writing trailing bytes";
262 return false;
263 }
264 return true;
265 }
266
267 // Archives all files in |input_dir| and writes result into |out_fd|
268 // Logic obtained from //external/toybox/toys/posix/cpio.c "Output cpio archive"
269 // portion
cpioArchiveFilesInDir(int out_fd,const char * input_dir)270 size_t cpioArchiveFilesInDir(int out_fd, const char* input_dir) {
271 struct dirent* dp;
272 size_t n_error = 0;
273 std::unique_ptr<DIR, decltype(&closedir)> dir_dump(opendir(input_dir),
274 closedir);
275 if (!dir_dump) {
276 PLOG(ERROR) << "Failed to open directory";
277 return ++n_error;
278 }
279 while ((dp = readdir(dir_dump.get()))) {
280 if (dp->d_type != DT_REG) {
281 continue;
282 }
283 std::string cur_file_name(dp->d_name);
284 // string.size() does not include the null terminator. The cpio FreeBSD
285 // file header expects the null character to be included in the length.
286 const size_t file_name_len = cur_file_name.size() + 1;
287 struct stat st;
288 const std::string cur_file_path = kTombstoneFolderPath + cur_file_name;
289 if (stat(cur_file_path.c_str(), &st) == -1) {
290 PLOG(ERROR) << "Failed to get file stat for " << cur_file_path;
291 n_error++;
292 continue;
293 }
294 const int fd_read = open(cur_file_path.c_str(), O_RDONLY);
295 if (fd_read == -1) {
296 PLOG(ERROR) << "Failed to open file " << cur_file_path;
297 n_error++;
298 continue;
299 }
300 unique_fd file_auto_closer(fd_read);
301 if (!cpioWriteHeader(out_fd, st, cur_file_name.c_str(),
302 file_name_len)) {
303 return ++n_error;
304 }
305 size_t write_error = cpioWriteFileContent(fd_read, out_fd, st);
306 if (write_error) {
307 return n_error + write_error;
308 }
309 }
310 if (!cpioWriteFileTrailer(out_fd)) {
311 return ++n_error;
312 }
313 return n_error;
314 }
315
316 // Helper function to create a non-const char*.
makeCharVec(const std::string & str)317 std::vector<char> makeCharVec(const std::string& str) {
318 std::vector<char> vec(str.size() + 1);
319 vec.assign(str.begin(), str.end());
320 vec.push_back('\0');
321 return vec;
322 }
323
324 } // namespace
325
326 namespace android {
327 namespace hardware {
328 namespace wifi {
329 namespace V1_4 {
330 namespace implementation {
331 using hidl_return_util::validateAndCall;
332 using hidl_return_util::validateAndCallWithLock;
333
WifiChip(ChipId chip_id,const std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal,const std::weak_ptr<mode_controller::WifiModeController> mode_controller,const std::weak_ptr<iface_util::WifiIfaceUtil> iface_util,const std::weak_ptr<feature_flags::WifiFeatureFlags> feature_flags)334 WifiChip::WifiChip(
335 ChipId chip_id, const std::weak_ptr<legacy_hal::WifiLegacyHal> legacy_hal,
336 const std::weak_ptr<mode_controller::WifiModeController> mode_controller,
337 const std::weak_ptr<iface_util::WifiIfaceUtil> iface_util,
338 const std::weak_ptr<feature_flags::WifiFeatureFlags> feature_flags)
339 : chip_id_(chip_id),
340 legacy_hal_(legacy_hal),
341 mode_controller_(mode_controller),
342 iface_util_(iface_util),
343 is_valid_(true),
344 current_mode_id_(feature_flags::chip_mode_ids::kInvalid),
345 modes_(feature_flags.lock()->getChipModes()),
346 debug_ring_buffer_cb_registered_(false) {
347 setActiveWlanIfaceNameProperty(kNoActiveWlanIfaceNamePropertyValue);
348 }
349
invalidate()350 void WifiChip::invalidate() {
351 if (!writeRingbufferFilesInternal()) {
352 LOG(ERROR) << "Error writing files to flash";
353 }
354 invalidateAndRemoveAllIfaces();
355 setActiveWlanIfaceNameProperty(kNoActiveWlanIfaceNamePropertyValue);
356 legacy_hal_.reset();
357 event_cb_handler_.invalidate();
358 is_valid_ = false;
359 }
360
isValid()361 bool WifiChip::isValid() { return is_valid_; }
362
getEventCallbacks()363 std::set<sp<IWifiChipEventCallback>> WifiChip::getEventCallbacks() {
364 return event_cb_handler_.getCallbacks();
365 }
366
getId(getId_cb hidl_status_cb)367 Return<void> WifiChip::getId(getId_cb hidl_status_cb) {
368 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
369 &WifiChip::getIdInternal, hidl_status_cb);
370 }
371
372 // Deprecated support for this callback
registerEventCallback(const sp<V1_0::IWifiChipEventCallback> & event_callback,registerEventCallback_cb hidl_status_cb)373 Return<void> WifiChip::registerEventCallback(
374 const sp<V1_0::IWifiChipEventCallback>& event_callback,
375 registerEventCallback_cb hidl_status_cb) {
376 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
377 &WifiChip::registerEventCallbackInternal,
378 hidl_status_cb, event_callback);
379 }
380
getCapabilities(getCapabilities_cb hidl_status_cb)381 Return<void> WifiChip::getCapabilities(getCapabilities_cb hidl_status_cb) {
382 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
383 &WifiChip::getCapabilitiesInternal, hidl_status_cb);
384 }
385
getAvailableModes(getAvailableModes_cb hidl_status_cb)386 Return<void> WifiChip::getAvailableModes(getAvailableModes_cb hidl_status_cb) {
387 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
388 &WifiChip::getAvailableModesInternal,
389 hidl_status_cb);
390 }
391
configureChip(ChipModeId mode_id,configureChip_cb hidl_status_cb)392 Return<void> WifiChip::configureChip(ChipModeId mode_id,
393 configureChip_cb hidl_status_cb) {
394 return validateAndCallWithLock(
395 this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
396 &WifiChip::configureChipInternal, hidl_status_cb, mode_id);
397 }
398
getMode(getMode_cb hidl_status_cb)399 Return<void> WifiChip::getMode(getMode_cb hidl_status_cb) {
400 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
401 &WifiChip::getModeInternal, hidl_status_cb);
402 }
403
requestChipDebugInfo(requestChipDebugInfo_cb hidl_status_cb)404 Return<void> WifiChip::requestChipDebugInfo(
405 requestChipDebugInfo_cb hidl_status_cb) {
406 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
407 &WifiChip::requestChipDebugInfoInternal,
408 hidl_status_cb);
409 }
410
requestDriverDebugDump(requestDriverDebugDump_cb hidl_status_cb)411 Return<void> WifiChip::requestDriverDebugDump(
412 requestDriverDebugDump_cb hidl_status_cb) {
413 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
414 &WifiChip::requestDriverDebugDumpInternal,
415 hidl_status_cb);
416 }
417
requestFirmwareDebugDump(requestFirmwareDebugDump_cb hidl_status_cb)418 Return<void> WifiChip::requestFirmwareDebugDump(
419 requestFirmwareDebugDump_cb hidl_status_cb) {
420 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
421 &WifiChip::requestFirmwareDebugDumpInternal,
422 hidl_status_cb);
423 }
424
createApIface(createApIface_cb hidl_status_cb)425 Return<void> WifiChip::createApIface(createApIface_cb hidl_status_cb) {
426 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
427 &WifiChip::createApIfaceInternal, hidl_status_cb);
428 }
429
getApIfaceNames(getApIfaceNames_cb hidl_status_cb)430 Return<void> WifiChip::getApIfaceNames(getApIfaceNames_cb hidl_status_cb) {
431 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
432 &WifiChip::getApIfaceNamesInternal, hidl_status_cb);
433 }
434
getApIface(const hidl_string & ifname,getApIface_cb hidl_status_cb)435 Return<void> WifiChip::getApIface(const hidl_string& ifname,
436 getApIface_cb hidl_status_cb) {
437 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
438 &WifiChip::getApIfaceInternal, hidl_status_cb,
439 ifname);
440 }
441
removeApIface(const hidl_string & ifname,removeApIface_cb hidl_status_cb)442 Return<void> WifiChip::removeApIface(const hidl_string& ifname,
443 removeApIface_cb hidl_status_cb) {
444 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
445 &WifiChip::removeApIfaceInternal, hidl_status_cb,
446 ifname);
447 }
448
createNanIface(createNanIface_cb hidl_status_cb)449 Return<void> WifiChip::createNanIface(createNanIface_cb hidl_status_cb) {
450 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
451 &WifiChip::createNanIfaceInternal, hidl_status_cb);
452 }
453
getNanIfaceNames(getNanIfaceNames_cb hidl_status_cb)454 Return<void> WifiChip::getNanIfaceNames(getNanIfaceNames_cb hidl_status_cb) {
455 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
456 &WifiChip::getNanIfaceNamesInternal, hidl_status_cb);
457 }
458
getNanIface(const hidl_string & ifname,getNanIface_cb hidl_status_cb)459 Return<void> WifiChip::getNanIface(const hidl_string& ifname,
460 getNanIface_cb hidl_status_cb) {
461 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
462 &WifiChip::getNanIfaceInternal, hidl_status_cb,
463 ifname);
464 }
465
removeNanIface(const hidl_string & ifname,removeNanIface_cb hidl_status_cb)466 Return<void> WifiChip::removeNanIface(const hidl_string& ifname,
467 removeNanIface_cb hidl_status_cb) {
468 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
469 &WifiChip::removeNanIfaceInternal, hidl_status_cb,
470 ifname);
471 }
472
createP2pIface(createP2pIface_cb hidl_status_cb)473 Return<void> WifiChip::createP2pIface(createP2pIface_cb hidl_status_cb) {
474 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
475 &WifiChip::createP2pIfaceInternal, hidl_status_cb);
476 }
477
getP2pIfaceNames(getP2pIfaceNames_cb hidl_status_cb)478 Return<void> WifiChip::getP2pIfaceNames(getP2pIfaceNames_cb hidl_status_cb) {
479 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
480 &WifiChip::getP2pIfaceNamesInternal, hidl_status_cb);
481 }
482
getP2pIface(const hidl_string & ifname,getP2pIface_cb hidl_status_cb)483 Return<void> WifiChip::getP2pIface(const hidl_string& ifname,
484 getP2pIface_cb hidl_status_cb) {
485 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
486 &WifiChip::getP2pIfaceInternal, hidl_status_cb,
487 ifname);
488 }
489
removeP2pIface(const hidl_string & ifname,removeP2pIface_cb hidl_status_cb)490 Return<void> WifiChip::removeP2pIface(const hidl_string& ifname,
491 removeP2pIface_cb hidl_status_cb) {
492 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
493 &WifiChip::removeP2pIfaceInternal, hidl_status_cb,
494 ifname);
495 }
496
createStaIface(createStaIface_cb hidl_status_cb)497 Return<void> WifiChip::createStaIface(createStaIface_cb hidl_status_cb) {
498 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
499 &WifiChip::createStaIfaceInternal, hidl_status_cb);
500 }
501
getStaIfaceNames(getStaIfaceNames_cb hidl_status_cb)502 Return<void> WifiChip::getStaIfaceNames(getStaIfaceNames_cb hidl_status_cb) {
503 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
504 &WifiChip::getStaIfaceNamesInternal, hidl_status_cb);
505 }
506
getStaIface(const hidl_string & ifname,getStaIface_cb hidl_status_cb)507 Return<void> WifiChip::getStaIface(const hidl_string& ifname,
508 getStaIface_cb hidl_status_cb) {
509 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
510 &WifiChip::getStaIfaceInternal, hidl_status_cb,
511 ifname);
512 }
513
removeStaIface(const hidl_string & ifname,removeStaIface_cb hidl_status_cb)514 Return<void> WifiChip::removeStaIface(const hidl_string& ifname,
515 removeStaIface_cb hidl_status_cb) {
516 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
517 &WifiChip::removeStaIfaceInternal, hidl_status_cb,
518 ifname);
519 }
520
createRttController(const sp<IWifiIface> & bound_iface,createRttController_cb hidl_status_cb)521 Return<void> WifiChip::createRttController(
522 const sp<IWifiIface>& bound_iface, createRttController_cb hidl_status_cb) {
523 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
524 &WifiChip::createRttControllerInternal,
525 hidl_status_cb, bound_iface);
526 }
527
getDebugRingBuffersStatus(getDebugRingBuffersStatus_cb hidl_status_cb)528 Return<void> WifiChip::getDebugRingBuffersStatus(
529 getDebugRingBuffersStatus_cb hidl_status_cb) {
530 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
531 &WifiChip::getDebugRingBuffersStatusInternal,
532 hidl_status_cb);
533 }
534
startLoggingToDebugRingBuffer(const hidl_string & ring_name,WifiDebugRingBufferVerboseLevel verbose_level,uint32_t max_interval_in_sec,uint32_t min_data_size_in_bytes,startLoggingToDebugRingBuffer_cb hidl_status_cb)535 Return<void> WifiChip::startLoggingToDebugRingBuffer(
536 const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level,
537 uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes,
538 startLoggingToDebugRingBuffer_cb hidl_status_cb) {
539 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
540 &WifiChip::startLoggingToDebugRingBufferInternal,
541 hidl_status_cb, ring_name, verbose_level,
542 max_interval_in_sec, min_data_size_in_bytes);
543 }
544
forceDumpToDebugRingBuffer(const hidl_string & ring_name,forceDumpToDebugRingBuffer_cb hidl_status_cb)545 Return<void> WifiChip::forceDumpToDebugRingBuffer(
546 const hidl_string& ring_name,
547 forceDumpToDebugRingBuffer_cb hidl_status_cb) {
548 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
549 &WifiChip::forceDumpToDebugRingBufferInternal,
550 hidl_status_cb, ring_name);
551 }
552
flushRingBufferToFile(flushRingBufferToFile_cb hidl_status_cb)553 Return<void> WifiChip::flushRingBufferToFile(
554 flushRingBufferToFile_cb hidl_status_cb) {
555 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
556 &WifiChip::flushRingBufferToFileInternal,
557 hidl_status_cb);
558 }
559
stopLoggingToDebugRingBuffer(stopLoggingToDebugRingBuffer_cb hidl_status_cb)560 Return<void> WifiChip::stopLoggingToDebugRingBuffer(
561 stopLoggingToDebugRingBuffer_cb hidl_status_cb) {
562 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
563 &WifiChip::stopLoggingToDebugRingBufferInternal,
564 hidl_status_cb);
565 }
566
getDebugHostWakeReasonStats(getDebugHostWakeReasonStats_cb hidl_status_cb)567 Return<void> WifiChip::getDebugHostWakeReasonStats(
568 getDebugHostWakeReasonStats_cb hidl_status_cb) {
569 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
570 &WifiChip::getDebugHostWakeReasonStatsInternal,
571 hidl_status_cb);
572 }
573
enableDebugErrorAlerts(bool enable,enableDebugErrorAlerts_cb hidl_status_cb)574 Return<void> WifiChip::enableDebugErrorAlerts(
575 bool enable, enableDebugErrorAlerts_cb hidl_status_cb) {
576 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
577 &WifiChip::enableDebugErrorAlertsInternal,
578 hidl_status_cb, enable);
579 }
580
selectTxPowerScenario(V1_1::IWifiChip::TxPowerScenario scenario,selectTxPowerScenario_cb hidl_status_cb)581 Return<void> WifiChip::selectTxPowerScenario(
582 V1_1::IWifiChip::TxPowerScenario scenario,
583 selectTxPowerScenario_cb hidl_status_cb) {
584 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
585 &WifiChip::selectTxPowerScenarioInternal,
586 hidl_status_cb, scenario);
587 }
588
resetTxPowerScenario(resetTxPowerScenario_cb hidl_status_cb)589 Return<void> WifiChip::resetTxPowerScenario(
590 resetTxPowerScenario_cb hidl_status_cb) {
591 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
592 &WifiChip::resetTxPowerScenarioInternal,
593 hidl_status_cb);
594 }
595
setLatencyMode(LatencyMode mode,setLatencyMode_cb hidl_status_cb)596 Return<void> WifiChip::setLatencyMode(LatencyMode mode,
597 setLatencyMode_cb hidl_status_cb) {
598 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
599 &WifiChip::setLatencyModeInternal, hidl_status_cb,
600 mode);
601 }
602
registerEventCallback_1_2(const sp<V1_2::IWifiChipEventCallback> & event_callback,registerEventCallback_cb hidl_status_cb)603 Return<void> WifiChip::registerEventCallback_1_2(
604 const sp<V1_2::IWifiChipEventCallback>& event_callback,
605 registerEventCallback_cb hidl_status_cb) {
606 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
607 &WifiChip::registerEventCallbackInternal_1_2,
608 hidl_status_cb, event_callback);
609 }
610
selectTxPowerScenario_1_2(TxPowerScenario scenario,selectTxPowerScenario_cb hidl_status_cb)611 Return<void> WifiChip::selectTxPowerScenario_1_2(
612 TxPowerScenario scenario, selectTxPowerScenario_cb hidl_status_cb) {
613 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
614 &WifiChip::selectTxPowerScenarioInternal_1_2,
615 hidl_status_cb, scenario);
616 }
617
getCapabilities_1_3(getCapabilities_cb hidl_status_cb)618 Return<void> WifiChip::getCapabilities_1_3(getCapabilities_cb hidl_status_cb) {
619 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
620 &WifiChip::getCapabilitiesInternal_1_3,
621 hidl_status_cb);
622 }
623
debug(const hidl_handle & handle,const hidl_vec<hidl_string> &)624 Return<void> WifiChip::debug(const hidl_handle& handle,
625 const hidl_vec<hidl_string>&) {
626 if (handle != nullptr && handle->numFds >= 1) {
627 int fd = handle->data[0];
628 if (!writeRingbufferFilesInternal()) {
629 LOG(ERROR) << "Error writing files to flash";
630 }
631 uint32_t n_error = cpioArchiveFilesInDir(fd, kTombstoneFolderPath);
632 if (n_error != 0) {
633 LOG(ERROR) << n_error << " errors occured in cpio function";
634 }
635 fsync(fd);
636 } else {
637 LOG(ERROR) << "File handle error";
638 }
639 return Void();
640 }
641
createRttController_1_4(const sp<IWifiIface> & bound_iface,createRttController_1_4_cb hidl_status_cb)642 Return<void> WifiChip::createRttController_1_4(
643 const sp<IWifiIface>& bound_iface,
644 createRttController_1_4_cb hidl_status_cb) {
645 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
646 &WifiChip::createRttControllerInternal_1_4,
647 hidl_status_cb, bound_iface);
648 }
649
registerEventCallback_1_4(const sp<IWifiChipEventCallback> & event_callback,registerEventCallback_cb hidl_status_cb)650 Return<void> WifiChip::registerEventCallback_1_4(
651 const sp<IWifiChipEventCallback>& event_callback,
652 registerEventCallback_cb hidl_status_cb) {
653 return validateAndCall(this, WifiStatusCode::ERROR_WIFI_CHIP_INVALID,
654 &WifiChip::registerEventCallbackInternal_1_4,
655 hidl_status_cb, event_callback);
656 }
657
invalidateAndRemoveAllIfaces()658 void WifiChip::invalidateAndRemoveAllIfaces() {
659 invalidateAndClearAll(ap_ifaces_);
660 invalidateAndClearAll(nan_ifaces_);
661 invalidateAndClearAll(p2p_ifaces_);
662 invalidateAndClearAll(sta_ifaces_);
663 // Since all the ifaces are invalid now, all RTT controller objects
664 // using those ifaces also need to be invalidated.
665 for (const auto& rtt : rtt_controllers_) {
666 rtt->invalidate();
667 }
668 rtt_controllers_.clear();
669 }
670
invalidateAndRemoveDependencies(const std::string & removed_iface_name)671 void WifiChip::invalidateAndRemoveDependencies(
672 const std::string& removed_iface_name) {
673 for (const auto& nan_iface : nan_ifaces_) {
674 if (nan_iface->getName() == removed_iface_name) {
675 invalidateAndClear(nan_ifaces_, nan_iface);
676 for (const auto& callback : event_cb_handler_.getCallbacks()) {
677 if (!callback
678 ->onIfaceRemoved(IfaceType::NAN, removed_iface_name)
679 .isOk()) {
680 LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
681 }
682 }
683 }
684 }
685 for (const auto& rtt : rtt_controllers_) {
686 if (rtt->getIfaceName() == removed_iface_name) {
687 invalidateAndClear(rtt_controllers_, rtt);
688 }
689 }
690 }
691
getIdInternal()692 std::pair<WifiStatus, ChipId> WifiChip::getIdInternal() {
693 return {createWifiStatus(WifiStatusCode::SUCCESS), chip_id_};
694 }
695
registerEventCallbackInternal(const sp<V1_0::IWifiChipEventCallback> &)696 WifiStatus WifiChip::registerEventCallbackInternal(
697 const sp<V1_0::IWifiChipEventCallback>& /* event_callback */) {
698 // Deprecated support for this callback.
699 return createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED);
700 }
701
getCapabilitiesInternal()702 std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal() {
703 // Deprecated support for this callback.
704 return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), 0};
705 }
706
707 std::pair<WifiStatus, std::vector<IWifiChip::ChipMode>>
getAvailableModesInternal()708 WifiChip::getAvailableModesInternal() {
709 return {createWifiStatus(WifiStatusCode::SUCCESS), modes_};
710 }
711
configureChipInternal(std::unique_lock<std::recursive_mutex> * lock,ChipModeId mode_id)712 WifiStatus WifiChip::configureChipInternal(
713 /* NONNULL */ std::unique_lock<std::recursive_mutex>* lock,
714 ChipModeId mode_id) {
715 if (!isValidModeId(mode_id)) {
716 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
717 }
718 if (mode_id == current_mode_id_) {
719 LOG(DEBUG) << "Already in the specified mode " << mode_id;
720 return createWifiStatus(WifiStatusCode::SUCCESS);
721 }
722 WifiStatus status = handleChipConfiguration(lock, mode_id);
723 if (status.code != WifiStatusCode::SUCCESS) {
724 for (const auto& callback : event_cb_handler_.getCallbacks()) {
725 if (!callback->onChipReconfigureFailure(status).isOk()) {
726 LOG(ERROR)
727 << "Failed to invoke onChipReconfigureFailure callback";
728 }
729 }
730 return status;
731 }
732 for (const auto& callback : event_cb_handler_.getCallbacks()) {
733 if (!callback->onChipReconfigured(mode_id).isOk()) {
734 LOG(ERROR) << "Failed to invoke onChipReconfigured callback";
735 }
736 }
737 current_mode_id_ = mode_id;
738 LOG(INFO) << "Configured chip in mode " << mode_id;
739 setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
740 return status;
741 }
742
getModeInternal()743 std::pair<WifiStatus, uint32_t> WifiChip::getModeInternal() {
744 if (!isValidModeId(current_mode_id_)) {
745 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE),
746 current_mode_id_};
747 }
748 return {createWifiStatus(WifiStatusCode::SUCCESS), current_mode_id_};
749 }
750
751 std::pair<WifiStatus, IWifiChip::ChipDebugInfo>
requestChipDebugInfoInternal()752 WifiChip::requestChipDebugInfoInternal() {
753 IWifiChip::ChipDebugInfo result;
754 legacy_hal::wifi_error legacy_status;
755 std::string driver_desc;
756 const auto ifname = getFirstActiveWlanIfaceName();
757 std::tie(legacy_status, driver_desc) =
758 legacy_hal_.lock()->getDriverVersion(ifname);
759 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
760 LOG(ERROR) << "Failed to get driver version: "
761 << legacyErrorToString(legacy_status);
762 WifiStatus status = createWifiStatusFromLegacyError(
763 legacy_status, "failed to get driver version");
764 return {status, result};
765 }
766 result.driverDescription = driver_desc.c_str();
767
768 std::string firmware_desc;
769 std::tie(legacy_status, firmware_desc) =
770 legacy_hal_.lock()->getFirmwareVersion(ifname);
771 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
772 LOG(ERROR) << "Failed to get firmware version: "
773 << legacyErrorToString(legacy_status);
774 WifiStatus status = createWifiStatusFromLegacyError(
775 legacy_status, "failed to get firmware version");
776 return {status, result};
777 }
778 result.firmwareDescription = firmware_desc.c_str();
779
780 return {createWifiStatus(WifiStatusCode::SUCCESS), result};
781 }
782
783 std::pair<WifiStatus, std::vector<uint8_t>>
requestDriverDebugDumpInternal()784 WifiChip::requestDriverDebugDumpInternal() {
785 legacy_hal::wifi_error legacy_status;
786 std::vector<uint8_t> driver_dump;
787 std::tie(legacy_status, driver_dump) =
788 legacy_hal_.lock()->requestDriverMemoryDump(
789 getFirstActiveWlanIfaceName());
790 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
791 LOG(ERROR) << "Failed to get driver debug dump: "
792 << legacyErrorToString(legacy_status);
793 return {createWifiStatusFromLegacyError(legacy_status),
794 std::vector<uint8_t>()};
795 }
796 return {createWifiStatus(WifiStatusCode::SUCCESS), driver_dump};
797 }
798
799 std::pair<WifiStatus, std::vector<uint8_t>>
requestFirmwareDebugDumpInternal()800 WifiChip::requestFirmwareDebugDumpInternal() {
801 legacy_hal::wifi_error legacy_status;
802 std::vector<uint8_t> firmware_dump;
803 std::tie(legacy_status, firmware_dump) =
804 legacy_hal_.lock()->requestFirmwareMemoryDump(
805 getFirstActiveWlanIfaceName());
806 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
807 LOG(ERROR) << "Failed to get firmware debug dump: "
808 << legacyErrorToString(legacy_status);
809 return {createWifiStatusFromLegacyError(legacy_status), {}};
810 }
811 return {createWifiStatus(WifiStatusCode::SUCCESS), firmware_dump};
812 }
813
createApIfaceInternal()814 std::pair<WifiStatus, sp<IWifiApIface>> WifiChip::createApIfaceInternal() {
815 if (!canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(IfaceType::AP)) {
816 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
817 }
818 std::string ifname = allocateApIfaceName();
819 legacy_hal::wifi_error legacy_status =
820 legacy_hal_.lock()->createVirtualInterface(
821 ifname,
822 hidl_struct_util::convertHidlIfaceTypeToLegacy(IfaceType::AP));
823 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
824 LOG(ERROR) << "Failed to add interface: " << ifname << " "
825 << legacyErrorToString(legacy_status);
826 return {createWifiStatusFromLegacyError(legacy_status), {}};
827 }
828 sp<WifiApIface> iface = new WifiApIface(ifname, legacy_hal_, iface_util_);
829 ap_ifaces_.push_back(iface);
830 for (const auto& callback : event_cb_handler_.getCallbacks()) {
831 if (!callback->onIfaceAdded(IfaceType::AP, ifname).isOk()) {
832 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
833 }
834 }
835 setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
836 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
837 }
838
839 std::pair<WifiStatus, std::vector<hidl_string>>
getApIfaceNamesInternal()840 WifiChip::getApIfaceNamesInternal() {
841 if (ap_ifaces_.empty()) {
842 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
843 }
844 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(ap_ifaces_)};
845 }
846
getApIfaceInternal(const std::string & ifname)847 std::pair<WifiStatus, sp<IWifiApIface>> WifiChip::getApIfaceInternal(
848 const std::string& ifname) {
849 const auto iface = findUsingName(ap_ifaces_, ifname);
850 if (!iface.get()) {
851 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
852 }
853 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
854 }
855
removeApIfaceInternal(const std::string & ifname)856 WifiStatus WifiChip::removeApIfaceInternal(const std::string& ifname) {
857 const auto iface = findUsingName(ap_ifaces_, ifname);
858 if (!iface.get()) {
859 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
860 }
861 // Invalidate & remove any dependent objects first.
862 // Note: This is probably not required because we never create
863 // nan/rtt objects over AP iface. But, there is no harm to do it
864 // here and not make that assumption all over the place.
865 invalidateAndRemoveDependencies(ifname);
866 legacy_hal::wifi_error legacy_status =
867 legacy_hal_.lock()->deleteVirtualInterface(ifname);
868 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
869 LOG(ERROR) << "Failed to remove interface: " << ifname << " "
870 << legacyErrorToString(legacy_status);
871 }
872 invalidateAndClear(ap_ifaces_, iface);
873 for (const auto& callback : event_cb_handler_.getCallbacks()) {
874 if (!callback->onIfaceRemoved(IfaceType::AP, ifname).isOk()) {
875 LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
876 }
877 }
878 setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
879 return createWifiStatus(WifiStatusCode::SUCCESS);
880 }
881
createNanIfaceInternal()882 std::pair<WifiStatus, sp<IWifiNanIface>> WifiChip::createNanIfaceInternal() {
883 if (!canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(IfaceType::NAN)) {
884 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
885 }
886 bool is_dedicated_iface = true;
887 std::string ifname = getNanIfaceName();
888 if (ifname.empty() || !iface_util_.lock()->ifNameToIndex(ifname)) {
889 // Use the first shared STA iface (wlan0) if a dedicated aware iface is
890 // not defined.
891 ifname = getFirstActiveWlanIfaceName();
892 is_dedicated_iface = false;
893 }
894 sp<WifiNanIface> iface =
895 new WifiNanIface(ifname, is_dedicated_iface, legacy_hal_, iface_util_);
896 nan_ifaces_.push_back(iface);
897 for (const auto& callback : event_cb_handler_.getCallbacks()) {
898 if (!callback->onIfaceAdded(IfaceType::NAN, ifname).isOk()) {
899 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
900 }
901 }
902 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
903 }
904
905 std::pair<WifiStatus, std::vector<hidl_string>>
getNanIfaceNamesInternal()906 WifiChip::getNanIfaceNamesInternal() {
907 if (nan_ifaces_.empty()) {
908 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
909 }
910 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(nan_ifaces_)};
911 }
912
getNanIfaceInternal(const std::string & ifname)913 std::pair<WifiStatus, sp<IWifiNanIface>> WifiChip::getNanIfaceInternal(
914 const std::string& ifname) {
915 const auto iface = findUsingName(nan_ifaces_, ifname);
916 if (!iface.get()) {
917 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
918 }
919 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
920 }
921
removeNanIfaceInternal(const std::string & ifname)922 WifiStatus WifiChip::removeNanIfaceInternal(const std::string& ifname) {
923 const auto iface = findUsingName(nan_ifaces_, ifname);
924 if (!iface.get()) {
925 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
926 }
927 invalidateAndClear(nan_ifaces_, iface);
928 for (const auto& callback : event_cb_handler_.getCallbacks()) {
929 if (!callback->onIfaceRemoved(IfaceType::NAN, ifname).isOk()) {
930 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
931 }
932 }
933 return createWifiStatus(WifiStatusCode::SUCCESS);
934 }
935
createP2pIfaceInternal()936 std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::createP2pIfaceInternal() {
937 if (!canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(IfaceType::P2P)) {
938 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
939 }
940 std::string ifname = getP2pIfaceName();
941 sp<WifiP2pIface> iface = new WifiP2pIface(ifname, legacy_hal_);
942 p2p_ifaces_.push_back(iface);
943 for (const auto& callback : event_cb_handler_.getCallbacks()) {
944 if (!callback->onIfaceAdded(IfaceType::P2P, ifname).isOk()) {
945 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
946 }
947 }
948 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
949 }
950
951 std::pair<WifiStatus, std::vector<hidl_string>>
getP2pIfaceNamesInternal()952 WifiChip::getP2pIfaceNamesInternal() {
953 if (p2p_ifaces_.empty()) {
954 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
955 }
956 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(p2p_ifaces_)};
957 }
958
getP2pIfaceInternal(const std::string & ifname)959 std::pair<WifiStatus, sp<IWifiP2pIface>> WifiChip::getP2pIfaceInternal(
960 const std::string& ifname) {
961 const auto iface = findUsingName(p2p_ifaces_, ifname);
962 if (!iface.get()) {
963 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
964 }
965 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
966 }
967
removeP2pIfaceInternal(const std::string & ifname)968 WifiStatus WifiChip::removeP2pIfaceInternal(const std::string& ifname) {
969 const auto iface = findUsingName(p2p_ifaces_, ifname);
970 if (!iface.get()) {
971 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
972 }
973 invalidateAndClear(p2p_ifaces_, iface);
974 for (const auto& callback : event_cb_handler_.getCallbacks()) {
975 if (!callback->onIfaceRemoved(IfaceType::P2P, ifname).isOk()) {
976 LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
977 }
978 }
979 return createWifiStatus(WifiStatusCode::SUCCESS);
980 }
981
982 std::pair<WifiStatus, sp<V1_3::IWifiStaIface>>
createStaIfaceInternal()983 WifiChip::createStaIfaceInternal() {
984 if (!canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(IfaceType::STA)) {
985 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
986 }
987 std::string ifname = allocateStaIfaceName();
988 legacy_hal::wifi_error legacy_status =
989 legacy_hal_.lock()->createVirtualInterface(
990 ifname,
991 hidl_struct_util::convertHidlIfaceTypeToLegacy(IfaceType::STA));
992 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
993 LOG(ERROR) << "Failed to add interface: " << ifname << " "
994 << legacyErrorToString(legacy_status);
995 return {createWifiStatusFromLegacyError(legacy_status), {}};
996 }
997 sp<WifiStaIface> iface = new WifiStaIface(ifname, legacy_hal_, iface_util_);
998 sta_ifaces_.push_back(iface);
999 for (const auto& callback : event_cb_handler_.getCallbacks()) {
1000 if (!callback->onIfaceAdded(IfaceType::STA, ifname).isOk()) {
1001 LOG(ERROR) << "Failed to invoke onIfaceAdded callback";
1002 }
1003 }
1004 setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
1005 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
1006 }
1007
1008 std::pair<WifiStatus, std::vector<hidl_string>>
getStaIfaceNamesInternal()1009 WifiChip::getStaIfaceNamesInternal() {
1010 if (sta_ifaces_.empty()) {
1011 return {createWifiStatus(WifiStatusCode::SUCCESS), {}};
1012 }
1013 return {createWifiStatus(WifiStatusCode::SUCCESS), getNames(sta_ifaces_)};
1014 }
1015
getStaIfaceInternal(const std::string & ifname)1016 std::pair<WifiStatus, sp<V1_3::IWifiStaIface>> WifiChip::getStaIfaceInternal(
1017 const std::string& ifname) {
1018 const auto iface = findUsingName(sta_ifaces_, ifname);
1019 if (!iface.get()) {
1020 return {createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS), nullptr};
1021 }
1022 return {createWifiStatus(WifiStatusCode::SUCCESS), iface};
1023 }
1024
removeStaIfaceInternal(const std::string & ifname)1025 WifiStatus WifiChip::removeStaIfaceInternal(const std::string& ifname) {
1026 const auto iface = findUsingName(sta_ifaces_, ifname);
1027 if (!iface.get()) {
1028 return createWifiStatus(WifiStatusCode::ERROR_INVALID_ARGS);
1029 }
1030 // Invalidate & remove any dependent objects first.
1031 invalidateAndRemoveDependencies(ifname);
1032 legacy_hal::wifi_error legacy_status =
1033 legacy_hal_.lock()->deleteVirtualInterface(ifname);
1034 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1035 LOG(ERROR) << "Failed to remove interface: " << ifname << " "
1036 << legacyErrorToString(legacy_status);
1037 }
1038 invalidateAndClear(sta_ifaces_, iface);
1039 for (const auto& callback : event_cb_handler_.getCallbacks()) {
1040 if (!callback->onIfaceRemoved(IfaceType::STA, ifname).isOk()) {
1041 LOG(ERROR) << "Failed to invoke onIfaceRemoved callback";
1042 }
1043 }
1044 setActiveWlanIfaceNameProperty(getFirstActiveWlanIfaceName());
1045 return createWifiStatus(WifiStatusCode::SUCCESS);
1046 }
1047
1048 std::pair<WifiStatus, sp<V1_0::IWifiRttController>>
createRttControllerInternal(const sp<IWifiIface> &)1049 WifiChip::createRttControllerInternal(const sp<IWifiIface>& /*bound_iface*/) {
1050 LOG(ERROR) << "createRttController is not supported on this HAL";
1051 return {createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED), {}};
1052 }
1053
1054 std::pair<WifiStatus, std::vector<WifiDebugRingBufferStatus>>
getDebugRingBuffersStatusInternal()1055 WifiChip::getDebugRingBuffersStatusInternal() {
1056 legacy_hal::wifi_error legacy_status;
1057 std::vector<legacy_hal::wifi_ring_buffer_status>
1058 legacy_ring_buffer_status_vec;
1059 std::tie(legacy_status, legacy_ring_buffer_status_vec) =
1060 legacy_hal_.lock()->getRingBuffersStatus(getFirstActiveWlanIfaceName());
1061 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1062 return {createWifiStatusFromLegacyError(legacy_status), {}};
1063 }
1064 std::vector<WifiDebugRingBufferStatus> hidl_ring_buffer_status_vec;
1065 if (!hidl_struct_util::convertLegacyVectorOfDebugRingBufferStatusToHidl(
1066 legacy_ring_buffer_status_vec, &hidl_ring_buffer_status_vec)) {
1067 return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}};
1068 }
1069 return {createWifiStatus(WifiStatusCode::SUCCESS),
1070 hidl_ring_buffer_status_vec};
1071 }
1072
startLoggingToDebugRingBufferInternal(const hidl_string & ring_name,WifiDebugRingBufferVerboseLevel verbose_level,uint32_t max_interval_in_sec,uint32_t min_data_size_in_bytes)1073 WifiStatus WifiChip::startLoggingToDebugRingBufferInternal(
1074 const hidl_string& ring_name, WifiDebugRingBufferVerboseLevel verbose_level,
1075 uint32_t max_interval_in_sec, uint32_t min_data_size_in_bytes) {
1076 WifiStatus status = registerDebugRingBufferCallback();
1077 if (status.code != WifiStatusCode::SUCCESS) {
1078 return status;
1079 }
1080 legacy_hal::wifi_error legacy_status =
1081 legacy_hal_.lock()->startRingBufferLogging(
1082 getFirstActiveWlanIfaceName(), ring_name,
1083 static_cast<
1084 std::underlying_type<WifiDebugRingBufferVerboseLevel>::type>(
1085 verbose_level),
1086 max_interval_in_sec, min_data_size_in_bytes);
1087 ringbuffer_map_.insert(std::pair<std::string, Ringbuffer>(
1088 ring_name, Ringbuffer(kMaxBufferSizeBytes)));
1089 // if verbose logging enabled, turn up HAL daemon logging as well.
1090 if (verbose_level < WifiDebugRingBufferVerboseLevel::VERBOSE) {
1091 android::base::SetMinimumLogSeverity(android::base::DEBUG);
1092 } else {
1093 android::base::SetMinimumLogSeverity(android::base::VERBOSE);
1094 }
1095 return createWifiStatusFromLegacyError(legacy_status);
1096 }
1097
forceDumpToDebugRingBufferInternal(const hidl_string & ring_name)1098 WifiStatus WifiChip::forceDumpToDebugRingBufferInternal(
1099 const hidl_string& ring_name) {
1100 WifiStatus status = registerDebugRingBufferCallback();
1101 if (status.code != WifiStatusCode::SUCCESS) {
1102 return status;
1103 }
1104 legacy_hal::wifi_error legacy_status =
1105 legacy_hal_.lock()->getRingBufferData(getFirstActiveWlanIfaceName(),
1106 ring_name);
1107
1108 return createWifiStatusFromLegacyError(legacy_status);
1109 }
1110
flushRingBufferToFileInternal()1111 WifiStatus WifiChip::flushRingBufferToFileInternal() {
1112 if (!writeRingbufferFilesInternal()) {
1113 LOG(ERROR) << "Error writing files to flash";
1114 return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
1115 }
1116 return createWifiStatus(WifiStatusCode::SUCCESS);
1117 }
1118
stopLoggingToDebugRingBufferInternal()1119 WifiStatus WifiChip::stopLoggingToDebugRingBufferInternal() {
1120 legacy_hal::wifi_error legacy_status =
1121 legacy_hal_.lock()->deregisterRingBufferCallbackHandler(
1122 getFirstActiveWlanIfaceName());
1123 return createWifiStatusFromLegacyError(legacy_status);
1124 }
1125
1126 std::pair<WifiStatus, WifiDebugHostWakeReasonStats>
getDebugHostWakeReasonStatsInternal()1127 WifiChip::getDebugHostWakeReasonStatsInternal() {
1128 legacy_hal::wifi_error legacy_status;
1129 legacy_hal::WakeReasonStats legacy_stats;
1130 std::tie(legacy_status, legacy_stats) =
1131 legacy_hal_.lock()->getWakeReasonStats(getFirstActiveWlanIfaceName());
1132 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1133 return {createWifiStatusFromLegacyError(legacy_status), {}};
1134 }
1135 WifiDebugHostWakeReasonStats hidl_stats;
1136 if (!hidl_struct_util::convertLegacyWakeReasonStatsToHidl(legacy_stats,
1137 &hidl_stats)) {
1138 return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), {}};
1139 }
1140 return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_stats};
1141 }
1142
enableDebugErrorAlertsInternal(bool enable)1143 WifiStatus WifiChip::enableDebugErrorAlertsInternal(bool enable) {
1144 legacy_hal::wifi_error legacy_status;
1145 if (enable) {
1146 android::wp<WifiChip> weak_ptr_this(this);
1147 const auto& on_alert_callback = [weak_ptr_this](
1148 int32_t error_code,
1149 std::vector<uint8_t> debug_data) {
1150 const auto shared_ptr_this = weak_ptr_this.promote();
1151 if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
1152 LOG(ERROR) << "Callback invoked on an invalid object";
1153 return;
1154 }
1155 for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
1156 if (!callback->onDebugErrorAlert(error_code, debug_data)
1157 .isOk()) {
1158 LOG(ERROR) << "Failed to invoke onDebugErrorAlert callback";
1159 }
1160 }
1161 };
1162 legacy_status = legacy_hal_.lock()->registerErrorAlertCallbackHandler(
1163 getFirstActiveWlanIfaceName(), on_alert_callback);
1164 } else {
1165 legacy_status = legacy_hal_.lock()->deregisterErrorAlertCallbackHandler(
1166 getFirstActiveWlanIfaceName());
1167 }
1168 return createWifiStatusFromLegacyError(legacy_status);
1169 }
1170
selectTxPowerScenarioInternal(V1_1::IWifiChip::TxPowerScenario scenario)1171 WifiStatus WifiChip::selectTxPowerScenarioInternal(
1172 V1_1::IWifiChip::TxPowerScenario scenario) {
1173 auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario(
1174 getFirstActiveWlanIfaceName(),
1175 hidl_struct_util::convertHidlTxPowerScenarioToLegacy(scenario));
1176 return createWifiStatusFromLegacyError(legacy_status);
1177 }
1178
resetTxPowerScenarioInternal()1179 WifiStatus WifiChip::resetTxPowerScenarioInternal() {
1180 auto legacy_status =
1181 legacy_hal_.lock()->resetTxPowerScenario(getFirstActiveWlanIfaceName());
1182 return createWifiStatusFromLegacyError(legacy_status);
1183 }
1184
setLatencyModeInternal(LatencyMode mode)1185 WifiStatus WifiChip::setLatencyModeInternal(LatencyMode mode) {
1186 auto legacy_status = legacy_hal_.lock()->setLatencyMode(
1187 getFirstActiveWlanIfaceName(),
1188 hidl_struct_util::convertHidlLatencyModeToLegacy(mode));
1189 return createWifiStatusFromLegacyError(legacy_status);
1190 }
1191
registerEventCallbackInternal_1_2(const sp<V1_2::IWifiChipEventCallback> &)1192 WifiStatus WifiChip::registerEventCallbackInternal_1_2(
1193 const sp<V1_2::IWifiChipEventCallback>& /* event_callback */) {
1194 // Deprecated support for this callback.
1195 return createWifiStatus(WifiStatusCode::ERROR_NOT_SUPPORTED);
1196 }
1197
selectTxPowerScenarioInternal_1_2(TxPowerScenario scenario)1198 WifiStatus WifiChip::selectTxPowerScenarioInternal_1_2(
1199 TxPowerScenario scenario) {
1200 auto legacy_status = legacy_hal_.lock()->selectTxPowerScenario(
1201 getFirstActiveWlanIfaceName(),
1202 hidl_struct_util::convertHidlTxPowerScenarioToLegacy_1_2(scenario));
1203 return createWifiStatusFromLegacyError(legacy_status);
1204 }
1205
getCapabilitiesInternal_1_3()1206 std::pair<WifiStatus, uint32_t> WifiChip::getCapabilitiesInternal_1_3() {
1207 legacy_hal::wifi_error legacy_status;
1208 uint32_t legacy_feature_set;
1209 uint32_t legacy_logger_feature_set;
1210 const auto ifname = getFirstActiveWlanIfaceName();
1211 std::tie(legacy_status, legacy_feature_set) =
1212 legacy_hal_.lock()->getSupportedFeatureSet(ifname);
1213 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1214 return {createWifiStatusFromLegacyError(legacy_status), 0};
1215 }
1216 std::tie(legacy_status, legacy_logger_feature_set) =
1217 legacy_hal_.lock()->getLoggerSupportedFeatureSet(ifname);
1218 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1219 // some devices don't support querying logger feature set
1220 legacy_logger_feature_set = 0;
1221 }
1222 uint32_t hidl_caps;
1223 if (!hidl_struct_util::convertLegacyFeaturesToHidlChipCapabilities(
1224 legacy_feature_set, legacy_logger_feature_set, &hidl_caps)) {
1225 return {createWifiStatus(WifiStatusCode::ERROR_UNKNOWN), 0};
1226 }
1227 return {createWifiStatus(WifiStatusCode::SUCCESS), hidl_caps};
1228 }
1229
1230 std::pair<WifiStatus, sp<IWifiRttController>>
createRttControllerInternal_1_4(const sp<IWifiIface> & bound_iface)1231 WifiChip::createRttControllerInternal_1_4(const sp<IWifiIface>& bound_iface) {
1232 if (sta_ifaces_.size() == 0 &&
1233 !canCurrentModeSupportIfaceOfType(IfaceType::STA)) {
1234 LOG(ERROR)
1235 << "createRttControllerInternal_1_4: Chip cannot support STAs "
1236 "(and RTT by extension)";
1237 return {createWifiStatus(WifiStatusCode::ERROR_NOT_AVAILABLE), {}};
1238 }
1239 sp<WifiRttController> rtt = new WifiRttController(
1240 getFirstActiveWlanIfaceName(), bound_iface, legacy_hal_);
1241 rtt_controllers_.emplace_back(rtt);
1242 return {createWifiStatus(WifiStatusCode::SUCCESS), rtt};
1243 }
1244
registerEventCallbackInternal_1_4(const sp<IWifiChipEventCallback> & event_callback)1245 WifiStatus WifiChip::registerEventCallbackInternal_1_4(
1246 const sp<IWifiChipEventCallback>& event_callback) {
1247 if (!event_cb_handler_.addCallback(event_callback)) {
1248 return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
1249 }
1250 return createWifiStatus(WifiStatusCode::SUCCESS);
1251 }
1252
handleChipConfiguration(std::unique_lock<std::recursive_mutex> * lock,ChipModeId mode_id)1253 WifiStatus WifiChip::handleChipConfiguration(
1254 /* NONNULL */ std::unique_lock<std::recursive_mutex>* lock,
1255 ChipModeId mode_id) {
1256 // If the chip is already configured in a different mode, stop
1257 // the legacy HAL and then start it after firmware mode change.
1258 if (isValidModeId(current_mode_id_)) {
1259 LOG(INFO) << "Reconfiguring chip from mode " << current_mode_id_
1260 << " to mode " << mode_id;
1261 invalidateAndRemoveAllIfaces();
1262 legacy_hal::wifi_error legacy_status =
1263 legacy_hal_.lock()->stop(lock, []() {});
1264 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1265 LOG(ERROR) << "Failed to stop legacy HAL: "
1266 << legacyErrorToString(legacy_status);
1267 return createWifiStatusFromLegacyError(legacy_status);
1268 }
1269 }
1270 // Firmware mode change not needed for V2 devices.
1271 bool success = true;
1272 if (mode_id == feature_flags::chip_mode_ids::kV1Sta) {
1273 success = mode_controller_.lock()->changeFirmwareMode(IfaceType::STA);
1274 } else if (mode_id == feature_flags::chip_mode_ids::kV1Ap) {
1275 success = mode_controller_.lock()->changeFirmwareMode(IfaceType::AP);
1276 }
1277 if (!success) {
1278 return createWifiStatus(WifiStatusCode::ERROR_UNKNOWN);
1279 }
1280 legacy_hal::wifi_error legacy_status = legacy_hal_.lock()->start();
1281 if (legacy_status != legacy_hal::WIFI_SUCCESS) {
1282 LOG(ERROR) << "Failed to start legacy HAL: "
1283 << legacyErrorToString(legacy_status);
1284 return createWifiStatusFromLegacyError(legacy_status);
1285 }
1286 // Every time the HAL is restarted, we need to register the
1287 // radio mode change callback.
1288 WifiStatus status = registerRadioModeChangeCallback();
1289 if (status.code != WifiStatusCode::SUCCESS) {
1290 // This probably is not a critical failure?
1291 LOG(ERROR) << "Failed to register radio mode change callback";
1292 }
1293 // Extract and save the version information into property.
1294 std::pair<WifiStatus, IWifiChip::ChipDebugInfo> version_info;
1295 version_info = WifiChip::requestChipDebugInfoInternal();
1296 if (WifiStatusCode::SUCCESS == version_info.first.code) {
1297 property_set("vendor.wlan.firmware.version",
1298 version_info.second.firmwareDescription.c_str());
1299 property_set("vendor.wlan.driver.version",
1300 version_info.second.driverDescription.c_str());
1301 }
1302
1303 return createWifiStatus(WifiStatusCode::SUCCESS);
1304 }
1305
registerDebugRingBufferCallback()1306 WifiStatus WifiChip::registerDebugRingBufferCallback() {
1307 if (debug_ring_buffer_cb_registered_) {
1308 return createWifiStatus(WifiStatusCode::SUCCESS);
1309 }
1310
1311 android::wp<WifiChip> weak_ptr_this(this);
1312 const auto& on_ring_buffer_data_callback =
1313 [weak_ptr_this](const std::string& name,
1314 const std::vector<uint8_t>& data,
1315 const legacy_hal::wifi_ring_buffer_status& status) {
1316 const auto shared_ptr_this = weak_ptr_this.promote();
1317 if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
1318 LOG(ERROR) << "Callback invoked on an invalid object";
1319 return;
1320 }
1321 WifiDebugRingBufferStatus hidl_status;
1322 if (!hidl_struct_util::convertLegacyDebugRingBufferStatusToHidl(
1323 status, &hidl_status)) {
1324 LOG(ERROR) << "Error converting ring buffer status";
1325 return;
1326 }
1327 {
1328 std::unique_lock<std::mutex> lk(shared_ptr_this->lock_t);
1329 const auto& target =
1330 shared_ptr_this->ringbuffer_map_.find(name);
1331 if (target != shared_ptr_this->ringbuffer_map_.end()) {
1332 Ringbuffer& cur_buffer = target->second;
1333 cur_buffer.append(data);
1334 } else {
1335 LOG(ERROR) << "Ringname " << name << " not found";
1336 return;
1337 }
1338 // unlock
1339 }
1340 };
1341 legacy_hal::wifi_error legacy_status =
1342 legacy_hal_.lock()->registerRingBufferCallbackHandler(
1343 getFirstActiveWlanIfaceName(), on_ring_buffer_data_callback);
1344
1345 if (legacy_status == legacy_hal::WIFI_SUCCESS) {
1346 debug_ring_buffer_cb_registered_ = true;
1347 }
1348 return createWifiStatusFromLegacyError(legacy_status);
1349 }
1350
registerRadioModeChangeCallback()1351 WifiStatus WifiChip::registerRadioModeChangeCallback() {
1352 android::wp<WifiChip> weak_ptr_this(this);
1353 const auto& on_radio_mode_change_callback =
1354 [weak_ptr_this](const std::vector<legacy_hal::WifiMacInfo>& mac_infos) {
1355 const auto shared_ptr_this = weak_ptr_this.promote();
1356 if (!shared_ptr_this.get() || !shared_ptr_this->isValid()) {
1357 LOG(ERROR) << "Callback invoked on an invalid object";
1358 return;
1359 }
1360 std::vector<IWifiChipEventCallback::RadioModeInfo>
1361 hidl_radio_mode_infos;
1362 if (!hidl_struct_util::convertLegacyWifiMacInfosToHidl(
1363 mac_infos, &hidl_radio_mode_infos)) {
1364 LOG(ERROR) << "Error converting wifi mac info";
1365 return;
1366 }
1367 for (const auto& callback : shared_ptr_this->getEventCallbacks()) {
1368 if (!callback->onRadioModeChange_1_4(hidl_radio_mode_infos)
1369 .isOk()) {
1370 LOG(ERROR) << "Failed to invoke onRadioModeChange_1_4"
1371 << " callback on: " << toString(callback);
1372 }
1373 }
1374 };
1375 legacy_hal::wifi_error legacy_status =
1376 legacy_hal_.lock()->registerRadioModeChangeCallbackHandler(
1377 getFirstActiveWlanIfaceName(), on_radio_mode_change_callback);
1378 return createWifiStatusFromLegacyError(legacy_status);
1379 }
1380
1381 std::vector<IWifiChip::ChipIfaceCombination>
getCurrentModeIfaceCombinations()1382 WifiChip::getCurrentModeIfaceCombinations() {
1383 if (!isValidModeId(current_mode_id_)) {
1384 LOG(ERROR) << "Chip not configured in a mode yet";
1385 return {};
1386 }
1387 for (const auto& mode : modes_) {
1388 if (mode.id == current_mode_id_) {
1389 return mode.availableCombinations;
1390 }
1391 }
1392 CHECK(0) << "Expected to find iface combinations for current mode!";
1393 return {};
1394 }
1395
1396 // Returns a map indexed by IfaceType with the number of ifaces currently
1397 // created of the corresponding type.
getCurrentIfaceCombination()1398 std::map<IfaceType, size_t> WifiChip::getCurrentIfaceCombination() {
1399 std::map<IfaceType, size_t> iface_counts;
1400 iface_counts[IfaceType::AP] = ap_ifaces_.size();
1401 iface_counts[IfaceType::NAN] = nan_ifaces_.size();
1402 iface_counts[IfaceType::P2P] = p2p_ifaces_.size();
1403 iface_counts[IfaceType::STA] = sta_ifaces_.size();
1404 return iface_counts;
1405 }
1406
1407 // This expands the provided iface combinations to a more parseable
1408 // form. Returns a vector of available combinations possible with the number
1409 // of ifaces of each type in the combination.
1410 // This method is a port of HalDeviceManager.expandIfaceCombos() from framework.
expandIfaceCombinations(const IWifiChip::ChipIfaceCombination & combination)1411 std::vector<std::map<IfaceType, size_t>> WifiChip::expandIfaceCombinations(
1412 const IWifiChip::ChipIfaceCombination& combination) {
1413 uint32_t num_expanded_combos = 1;
1414 for (const auto& limit : combination.limits) {
1415 for (uint32_t i = 0; i < limit.maxIfaces; i++) {
1416 num_expanded_combos *= limit.types.size();
1417 }
1418 }
1419
1420 // Allocate the vector of expanded combos and reset all iface counts to 0
1421 // in each combo.
1422 std::vector<std::map<IfaceType, size_t>> expanded_combos;
1423 expanded_combos.resize(num_expanded_combos);
1424 for (auto& expanded_combo : expanded_combos) {
1425 for (const auto type :
1426 {IfaceType::AP, IfaceType::NAN, IfaceType::P2P, IfaceType::STA}) {
1427 expanded_combo[type] = 0;
1428 }
1429 }
1430 uint32_t span = num_expanded_combos;
1431 for (const auto& limit : combination.limits) {
1432 for (uint32_t i = 0; i < limit.maxIfaces; i++) {
1433 span /= limit.types.size();
1434 for (uint32_t k = 0; k < num_expanded_combos; ++k) {
1435 const auto iface_type =
1436 limit.types[(k / span) % limit.types.size()];
1437 expanded_combos[k][iface_type]++;
1438 }
1439 }
1440 }
1441 return expanded_combos;
1442 }
1443
canExpandedIfaceComboSupportIfaceOfTypeWithCurrentIfaces(const std::map<IfaceType,size_t> & expanded_combo,IfaceType requested_type)1444 bool WifiChip::canExpandedIfaceComboSupportIfaceOfTypeWithCurrentIfaces(
1445 const std::map<IfaceType, size_t>& expanded_combo,
1446 IfaceType requested_type) {
1447 const auto current_combo = getCurrentIfaceCombination();
1448
1449 // Check if we have space for 1 more iface of |type| in this combo
1450 for (const auto type :
1451 {IfaceType::AP, IfaceType::NAN, IfaceType::P2P, IfaceType::STA}) {
1452 size_t num_ifaces_needed = current_combo.at(type);
1453 if (type == requested_type) {
1454 num_ifaces_needed++;
1455 }
1456 size_t num_ifaces_allowed = expanded_combo.at(type);
1457 if (num_ifaces_needed > num_ifaces_allowed) {
1458 return false;
1459 }
1460 }
1461 return true;
1462 }
1463
1464 // This method does the following:
1465 // a) Enumerate all possible iface combos by expanding the current
1466 // ChipIfaceCombination.
1467 // b) Check if the requested iface type can be added to the current mode
1468 // with the iface combination that is already active.
canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(IfaceType requested_type)1469 bool WifiChip::canCurrentModeSupportIfaceOfTypeWithCurrentIfaces(
1470 IfaceType requested_type) {
1471 if (!isValidModeId(current_mode_id_)) {
1472 LOG(ERROR) << "Chip not configured in a mode yet";
1473 return false;
1474 }
1475 const auto combinations = getCurrentModeIfaceCombinations();
1476 for (const auto& combination : combinations) {
1477 const auto expanded_combos = expandIfaceCombinations(combination);
1478 for (const auto& expanded_combo : expanded_combos) {
1479 if (canExpandedIfaceComboSupportIfaceOfTypeWithCurrentIfaces(
1480 expanded_combo, requested_type)) {
1481 return true;
1482 }
1483 }
1484 }
1485 return false;
1486 }
1487
1488 // Note: This does not consider ifaces already active. It only checks if the
1489 // provided expanded iface combination can support the requested combo.
canExpandedIfaceComboSupportIfaceCombo(const std::map<IfaceType,size_t> & expanded_combo,const std::map<IfaceType,size_t> & req_combo)1490 bool WifiChip::canExpandedIfaceComboSupportIfaceCombo(
1491 const std::map<IfaceType, size_t>& expanded_combo,
1492 const std::map<IfaceType, size_t>& req_combo) {
1493 // Check if we have space for 1 more iface of |type| in this combo
1494 for (const auto type :
1495 {IfaceType::AP, IfaceType::NAN, IfaceType::P2P, IfaceType::STA}) {
1496 if (req_combo.count(type) == 0) {
1497 // Iface of "type" not in the req_combo.
1498 continue;
1499 }
1500 size_t num_ifaces_needed = req_combo.at(type);
1501 size_t num_ifaces_allowed = expanded_combo.at(type);
1502 if (num_ifaces_needed > num_ifaces_allowed) {
1503 return false;
1504 }
1505 }
1506 return true;
1507 }
1508 // This method does the following:
1509 // a) Enumerate all possible iface combos by expanding the current
1510 // ChipIfaceCombination.
1511 // b) Check if the requested iface combo can be added to the current mode.
1512 // Note: This does not consider ifaces already active. It only checks if the
1513 // current mode can support the requested combo.
canCurrentModeSupportIfaceCombo(const std::map<IfaceType,size_t> & req_combo)1514 bool WifiChip::canCurrentModeSupportIfaceCombo(
1515 const std::map<IfaceType, size_t>& req_combo) {
1516 if (!isValidModeId(current_mode_id_)) {
1517 LOG(ERROR) << "Chip not configured in a mode yet";
1518 return false;
1519 }
1520 const auto combinations = getCurrentModeIfaceCombinations();
1521 for (const auto& combination : combinations) {
1522 const auto expanded_combos = expandIfaceCombinations(combination);
1523 for (const auto& expanded_combo : expanded_combos) {
1524 if (canExpandedIfaceComboSupportIfaceCombo(expanded_combo,
1525 req_combo)) {
1526 return true;
1527 }
1528 }
1529 }
1530 return false;
1531 }
1532
1533 // This method does the following:
1534 // a) Enumerate all possible iface combos by expanding the current
1535 // ChipIfaceCombination.
1536 // b) Check if the requested iface type can be added to the current mode.
canCurrentModeSupportIfaceOfType(IfaceType requested_type)1537 bool WifiChip::canCurrentModeSupportIfaceOfType(IfaceType requested_type) {
1538 // Check if we can support atleast 1 iface of type.
1539 std::map<IfaceType, size_t> req_iface_combo;
1540 req_iface_combo[requested_type] = 1;
1541 return canCurrentModeSupportIfaceCombo(req_iface_combo);
1542 }
1543
isValidModeId(ChipModeId mode_id)1544 bool WifiChip::isValidModeId(ChipModeId mode_id) {
1545 for (const auto& mode : modes_) {
1546 if (mode.id == mode_id) {
1547 return true;
1548 }
1549 }
1550 return false;
1551 }
1552
isStaApConcurrencyAllowedInCurrentMode()1553 bool WifiChip::isStaApConcurrencyAllowedInCurrentMode() {
1554 // Check if we can support atleast 1 STA & 1 AP concurrently.
1555 std::map<IfaceType, size_t> req_iface_combo;
1556 req_iface_combo[IfaceType::AP] = 1;
1557 req_iface_combo[IfaceType::STA] = 1;
1558 return canCurrentModeSupportIfaceCombo(req_iface_combo);
1559 }
1560
isDualApAllowedInCurrentMode()1561 bool WifiChip::isDualApAllowedInCurrentMode() {
1562 // Check if we can support atleast 1 STA & 1 AP concurrently.
1563 std::map<IfaceType, size_t> req_iface_combo;
1564 req_iface_combo[IfaceType::AP] = 2;
1565 return canCurrentModeSupportIfaceCombo(req_iface_combo);
1566 }
1567
getFirstActiveWlanIfaceName()1568 std::string WifiChip::getFirstActiveWlanIfaceName() {
1569 if (sta_ifaces_.size() > 0) return sta_ifaces_[0]->getName();
1570 if (ap_ifaces_.size() > 0) return ap_ifaces_[0]->getName();
1571 // This could happen if the chip call is made before any STA/AP
1572 // iface is created. Default to wlan0 for such cases.
1573 LOG(WARNING) << "No active wlan interfaces in use! Using default";
1574 return getWlanIfaceName(0);
1575 }
1576
1577 // Return the first wlan (wlan0, wlan1 etc.) starting from |start_idx|
1578 // not already in use.
1579 // Note: This doesn't check the actual presence of these interfaces.
allocateApOrStaIfaceName(uint32_t start_idx)1580 std::string WifiChip::allocateApOrStaIfaceName(uint32_t start_idx) {
1581 for (unsigned idx = start_idx; idx < kMaxWlanIfaces; idx++) {
1582 const auto ifname = getWlanIfaceName(idx);
1583 if (findUsingName(ap_ifaces_, ifname)) continue;
1584 if (findUsingName(sta_ifaces_, ifname)) continue;
1585 return ifname;
1586 }
1587 // This should never happen. We screwed up somewhere if it did.
1588 CHECK(false) << "All wlan interfaces in use already!";
1589 return {};
1590 }
1591
1592 // AP iface names start with idx 1 for modes supporting
1593 // concurrent STA and not dual AP, else start with idx 0.
allocateApIfaceName()1594 std::string WifiChip::allocateApIfaceName() {
1595 // Check if we have a dedicated iface for AP.
1596 std::string ifname = getApIfaceName();
1597 if (!ifname.empty()) {
1598 return ifname;
1599 }
1600 return allocateApOrStaIfaceName((isStaApConcurrencyAllowedInCurrentMode() &&
1601 !isDualApAllowedInCurrentMode())
1602 ? 1
1603 : 0);
1604 }
1605
1606 // STA iface names start with idx 0.
1607 // Primary STA iface will always be 0.
allocateStaIfaceName()1608 std::string WifiChip::allocateStaIfaceName() {
1609 return allocateApOrStaIfaceName(0);
1610 }
1611
writeRingbufferFilesInternal()1612 bool WifiChip::writeRingbufferFilesInternal() {
1613 if (!removeOldFilesInternal()) {
1614 LOG(ERROR) << "Error occurred while deleting old tombstone files";
1615 return false;
1616 }
1617 // write ringbuffers to file
1618 {
1619 std::unique_lock<std::mutex> lk(lock_t);
1620 for (const auto& item : ringbuffer_map_) {
1621 const Ringbuffer& cur_buffer = item.second;
1622 if (cur_buffer.getData().empty()) {
1623 continue;
1624 }
1625 const std::string file_path_raw =
1626 kTombstoneFolderPath + item.first + "XXXXXXXXXX";
1627 const int dump_fd = mkstemp(makeCharVec(file_path_raw).data());
1628 if (dump_fd == -1) {
1629 PLOG(ERROR) << "create file failed";
1630 return false;
1631 }
1632 unique_fd file_auto_closer(dump_fd);
1633 for (const auto& cur_block : cur_buffer.getData()) {
1634 if (write(dump_fd, cur_block.data(),
1635 sizeof(cur_block[0]) * cur_block.size()) == -1) {
1636 PLOG(ERROR) << "Error writing to file";
1637 }
1638 }
1639 }
1640 // unlock
1641 }
1642 return true;
1643 }
1644
1645 } // namespace implementation
1646 } // namespace V1_4
1647 } // namespace wifi
1648 } // namespace hardware
1649 } // namespace android
1650