1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define LOG_TAG "[email protected]"
18
19 #include "HexagonModel.h"
20 #include "HexagonOperations.h"
21 #include "OperationsUtils.h"
22
23 namespace android {
24 namespace hardware {
25 namespace neuralnetworks {
26 namespace V1_0 {
27 namespace implementation {
28 namespace hexagon {
29
30 using android::nn::Shape;
31
32 namespace {
33
addMul(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model,OperationType op)34 bool addMul(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
35 HexagonModel* model, OperationType op) {
36 HEXAGON_SOFT_ASSERT_EQ(3, ins.size(), "Need 3 inputs for " << toString(op));
37 HEXAGON_SOFT_ASSERT_EQ(1, outs.size(), "Need 1 output for " << toString(op));
38
39 // get output size
40 const Shape in1Shape = model->getShape(ins[0]);
41 const Shape in2Shape = model->getShape(ins[1]);
42 Shape outShape = model->getShape(outs[0]);
43 HEXAGON_SOFT_ASSERT(addMulPrepare(in1Shape, in2Shape, &outShape), "Error getting shape");
44 HEXAGON_SOFT_ASSERT(model->setShape(outs[0], outShape), "Error setting shape");
45
46 return true;
47 }
48
add(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)49 bool add(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs, HexagonModel* model) {
50 return addMul(ins, outs, model, OperationType::ADD);
51 }
52
mul(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)53 bool mul(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs, HexagonModel* model) {
54 return addMul(ins, outs, model, OperationType::MUL);
55 }
56
pool(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model,OperationType op)57 bool pool(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs, HexagonModel* model,
58 OperationType op) {
59 HEXAGON_SOFT_ASSERT(ins.size() == 10 || ins.size() == 7,
60 "Need 7 or 10 inputs for " << toString(op));
61
62 // get parameters
63 const Shape inShape = model->getShape(ins[0]);
64
65 // setup parameters
66 int32_t padding_left;
67 int32_t padding_right;
68 int32_t padding_top;
69 int32_t padding_bottom;
70 int32_t stride_width;
71 int32_t stride_height;
72 int32_t filter_width;
73 int32_t filter_height;
74
75 // get parameters
76 if (ins.size() == 10) {
77 padding_left = model->getScalar<int32_t>(ins[1]);
78 padding_right = model->getScalar<int32_t>(ins[2]);
79 padding_top = model->getScalar<int32_t>(ins[3]);
80 padding_bottom = model->getScalar<int32_t>(ins[4]);
81 stride_width = model->getScalar<int32_t>(ins[5]);
82 stride_height = model->getScalar<int32_t>(ins[6]);
83 filter_width = model->getScalar<int32_t>(ins[7]);
84 filter_height = model->getScalar<int32_t>(ins[8]);
85
86 HEXAGON_SOFT_ASSERT_NE(getPadding(inShape.dimensions[2], inShape.dimensions[1],
87 stride_width, stride_height, filter_width, filter_height,
88 padding_left, padding_right, padding_top, padding_bottom),
89 NN_PAD_NA, "Unknown padding");
90 } else {
91 const int32_t padding_implicit = model->getScalar<int32_t>(ins[1]);
92 stride_width = model->getScalar<int32_t>(ins[2]);
93 stride_height = model->getScalar<int32_t>(ins[3]);
94 filter_width = model->getScalar<int32_t>(ins[4]);
95 filter_height = model->getScalar<int32_t>(ins[5]);
96
97 nn::calculateExplicitPadding(inShape.dimensions[2], stride_width, filter_width,
98 padding_implicit, &padding_left, &padding_right);
99 nn::calculateExplicitPadding(inShape.dimensions[1], stride_height, filter_height,
100 padding_implicit, &padding_top, &padding_bottom);
101 }
102
103 // get output size
104 Shape outShape = model->getShape(outs[0]);
105 HEXAGON_SOFT_ASSERT(
106 genericPoolingPrepare(inShape, padding_left, padding_right, padding_top, padding_bottom,
107 stride_width, stride_height, filter_width, filter_height, &outShape),
108 "Error getting shape");
109 HEXAGON_SOFT_ASSERT(model->setShape(outs[0], outShape), "Error setting shape");
110
111 return true;
112 }
113
average_pool_2d(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)114 bool average_pool_2d(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
115 HexagonModel* model) {
116 return pool(ins, outs, model, OperationType::AVERAGE_POOL_2D);
117 }
118
l2_pool_2d(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)119 bool l2_pool_2d(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
120 HexagonModel* model) {
121 return pool(ins, outs, model, OperationType::L2_POOL_2D);
122 }
123
max_pool_2d(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)124 bool max_pool_2d(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
125 HexagonModel* model) {
126 return pool(ins, outs, model, OperationType::MAX_POOL_2D);
127 }
128
concatenation(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)129 bool concatenation(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
130 HexagonModel* model) {
131 std::string name = toString(OperationType::CONCATENATION);
132 HEXAGON_SOFT_ASSERT_LE(3, ins.size(), "Need at least 3 inputs for " << name);
133 HEXAGON_SOFT_ASSERT_EQ(1, outs.size(), "Need 1 output for " << name);
134
135 const size_t numInputTensors = ins.size() - 1;
136
137 const int32_t axis = model->getScalar<int32_t>(ins[numInputTensors]);
138
139 // get output size
140 std::vector<Shape> inShapes(numInputTensors);
141 for (size_t i = 0; i < numInputTensors; ++i) {
142 inShapes[i] = model->getShape(ins[i]);
143 }
144 Shape outShape = model->getShape(outs[0]);
145 HEXAGON_SOFT_ASSERT(concatenationPrepare(inShapes, axis, &outShape), "Error getting shape");
146 HEXAGON_SOFT_ASSERT(model->setShape(outs[0], outShape), "Error setting shape");
147
148 return true;
149 }
150
conv_2d(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)151 bool conv_2d(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
152 HexagonModel* model) {
153 std::string name = toString(OperationType::CONV_2D);
154 HEXAGON_SOFT_ASSERT(ins.size() == 10 || ins.size() == 7, "Need 7 or 10 inputs for " << name);
155 HEXAGON_SOFT_ASSERT_EQ(1, outs.size(), "Need 1 output for " << name);
156
157 // setup shapes
158 const Shape inputShape = model->getShape(ins[0]);
159 const Shape filterShape = model->getShape(ins[1]);
160 const Shape biasShape = model->getShape(ins[2]);
161
162 // setup parameters
163 int32_t padding_left;
164 int32_t padding_right;
165 int32_t padding_top;
166 int32_t padding_bottom;
167 int32_t stride_width;
168 int32_t stride_height;
169
170 // get parameters
171 if (ins.size() == 10) {
172 padding_left = model->getScalar<int32_t>(ins[3]);
173 padding_right = model->getScalar<int32_t>(ins[4]);
174 padding_top = model->getScalar<int32_t>(ins[5]);
175 padding_bottom = model->getScalar<int32_t>(ins[6]);
176 stride_width = model->getScalar<int32_t>(ins[7]);
177 stride_height = model->getScalar<int32_t>(ins[8]);
178
179 HEXAGON_SOFT_ASSERT_NE(
180 getPadding(inputShape.dimensions[2], inputShape.dimensions[1], stride_width,
181 stride_height, filterShape.dimensions[2], filterShape.dimensions[1],
182 padding_left, padding_right, padding_top, padding_bottom),
183 NN_PAD_NA, "Unknown padding");
184 } else {
185 const int32_t padding_implicit = model->getScalar<int32_t>(ins[3]);
186 stride_width = model->getScalar<int32_t>(ins[4]);
187 stride_height = model->getScalar<int32_t>(ins[5]);
188
189 nn::calculateExplicitPadding(inputShape.dimensions[2], stride_width,
190 filterShape.dimensions[2], padding_implicit, &padding_left,
191 &padding_right);
192 nn::calculateExplicitPadding(inputShape.dimensions[1], stride_height,
193 filterShape.dimensions[1], padding_implicit, &padding_top,
194 &padding_bottom);
195 }
196
197 // get output size
198 Shape outShape = model->getShape(outs[0]);
199 HEXAGON_SOFT_ASSERT(
200 convPrepare(inputShape, filterShape, biasShape, padding_left, padding_right, padding_top,
201 padding_bottom, stride_width, stride_height, &outShape),
202 "Error getting shape");
203 HEXAGON_SOFT_ASSERT(model->setShape(outs[0], outShape), "Error setting shape");
204
205 // enforce filter is a constant
206 HEXAGON_SOFT_ASSERT(model->isConstant(ins[1]), name << "requires filter to be constant data");
207
208 return true;
209 }
210
depthwise_conv_2d(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)211 bool depthwise_conv_2d(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
212 HexagonModel* model) {
213 std::string name = toString(OperationType::DEPTHWISE_CONV_2D);
214 HEXAGON_SOFT_ASSERT(ins.size() == 8 || ins.size() == 11, "Need 8 or 11 inputs for " << name);
215 HEXAGON_SOFT_ASSERT_EQ(1, outs.size(), "Need 1 output for " << name);
216
217 // setup shapes
218 const Shape inputShape = model->getShape(ins[0]);
219 const Shape filterShape = model->getShape(ins[1]);
220 const Shape biasShape = model->getShape(ins[2]);
221
222 // setup parameters
223 int32_t padding_left;
224 int32_t padding_right;
225 int32_t padding_top;
226 int32_t padding_bottom;
227 int32_t stride_width;
228 int32_t stride_height;
229
230 // get parameters
231 if (ins.size() == 11) {
232 padding_left = model->getScalar<int32_t>(ins[3]);
233 padding_right = model->getScalar<int32_t>(ins[4]);
234 padding_top = model->getScalar<int32_t>(ins[5]);
235 padding_bottom = model->getScalar<int32_t>(ins[6]);
236 stride_width = model->getScalar<int32_t>(ins[7]);
237 stride_height = model->getScalar<int32_t>(ins[8]);
238
239 HEXAGON_SOFT_ASSERT_NE(
240 getPadding(inputShape.dimensions[2], inputShape.dimensions[1], stride_width,
241 stride_height, filterShape.dimensions[2], filterShape.dimensions[1],
242 padding_left, padding_right, padding_top, padding_bottom),
243 NN_PAD_NA, "Unknown padding");
244
245 } else {
246 const int32_t padding_implicit = model->getScalar<int32_t>(ins[3]);
247 stride_width = model->getScalar<int32_t>(ins[4]);
248 stride_height = model->getScalar<int32_t>(ins[5]);
249
250 nn::calculateExplicitPadding(inputShape.dimensions[2], stride_width,
251 filterShape.dimensions[2], padding_implicit, &padding_left,
252 &padding_right);
253 nn::calculateExplicitPadding(inputShape.dimensions[1], stride_height,
254 filterShape.dimensions[1], padding_implicit, &padding_top,
255 &padding_bottom);
256 }
257
258 // get output size
259 Shape outShape = model->getShape(outs[0]);
260 HEXAGON_SOFT_ASSERT(
261 depthwiseConvPrepare(inputShape, filterShape, biasShape, padding_left, padding_right,
262 padding_top, padding_bottom, stride_width, stride_height, &outShape),
263 "Error getting shape");
264 HEXAGON_SOFT_ASSERT(model->setShape(outs[0], outShape), "Error setting shape");
265
266 // enforce filter is a constant
267 HEXAGON_SOFT_ASSERT(model->isConstant(ins[1]), name << " requires filter to be constant data");
268
269 return true;
270 }
271
dequantize(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)272 bool dequantize(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
273 HexagonModel* model) {
274 std::string name = toString(OperationType::DEQUANTIZE);
275 HEXAGON_SOFT_ASSERT_EQ(1, ins.size(), "Need 1 input for " << name);
276 HEXAGON_SOFT_ASSERT_EQ(1, outs.size(), "Need 1 output for " << name);
277
278 // get output size
279 const Shape inputShape = model->getShape(ins[0]);
280 Shape outShape = model->getShape(outs[0]);
281
282 HEXAGON_SOFT_ASSERT(dequantizePrepare(inputShape, &outShape), "Error getting shape");
283 HEXAGON_SOFT_ASSERT(model->setShape(outs[0], outShape), "Error setting shape");
284
285 return true;
286 }
287
fully_connected(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)288 bool fully_connected(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
289 HexagonModel* model) {
290 std::string name = toString(OperationType::FULLY_CONNECTED);
291 HEXAGON_SOFT_ASSERT_EQ(4, ins.size(), "Need 4 inputs for " << name);
292 HEXAGON_SOFT_ASSERT_EQ(1, outs.size(), "Need 1 output for " << name);
293
294 // get output size
295 const Shape inputShape = model->getShape(ins[0]);
296 const Shape weightsShape = model->getShape(ins[1]);
297 const Shape biasShape = model->getShape(ins[2]);
298 Shape outShape = model->getShape(outs[0]);
299 HEXAGON_SOFT_ASSERT(fullyConnectedPrepare(inputShape, weightsShape, biasShape, &outShape),
300 "Error getting shape");
301 HEXAGON_SOFT_ASSERT(model->setShape(outs[0], outShape), "Error setting shape");
302
303 // enforce weight is a constant
304 HEXAGON_SOFT_ASSERT(model->isConstant(ins[1]), name << "requires weight to be constant data");
305
306 return true;
307 }
308
local_response_normalization(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)309 bool local_response_normalization(const std::vector<uint32_t>& ins,
310 const std::vector<uint32_t>& outs, HexagonModel* model) {
311 std::string name = toString(OperationType::LOCAL_RESPONSE_NORMALIZATION);
312 HEXAGON_SOFT_ASSERT_EQ(5, ins.size(), "Need 5 inputs for " << name);
313 HEXAGON_SOFT_ASSERT_EQ(1, outs.size(), "Need 1 output for " << name);
314
315 // get output size
316 const Shape inShape = model->getShape(ins[0]);
317 Shape outShape = model->getShape(outs[0]);
318 HEXAGON_SOFT_ASSERT(genericNormalizationPrepare(inShape, &outShape), "Error getting shape");
319 HEXAGON_SOFT_ASSERT(model->setShape(outs[0], outShape), "Error setting shape");
320
321 return true;
322 }
323
activation(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model,uint32_t numInputs,OperationType op)324 bool activation(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
325 HexagonModel* model, uint32_t numInputs, OperationType op) {
326 HEXAGON_SOFT_ASSERT_EQ(numInputs, ins.size(),
327 "Need " << numInputs << " input for " << toString(op));
328 HEXAGON_SOFT_ASSERT_EQ(1, outs.size(), "Need 1 output for " << toString(op));
329
330 // get output size
331 const Shape inShape = model->getShape(ins[0]);
332 Shape outShape = model->getShape(outs[0]);
333 HEXAGON_SOFT_ASSERT(genericActivationPrepare(inShape, &outShape), "Error getting shape");
334 HEXAGON_SOFT_ASSERT(model->setShape(outs[0], outShape), "Error setting shape");
335
336 return true;
337 }
338
logistic(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)339 bool logistic(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
340 HexagonModel* model) {
341 return activation(ins, outs, model, 1, OperationType::LOGISTIC);
342 }
343
relu(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)344 bool relu(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
345 HexagonModel* model) {
346 return activation(ins, outs, model, 1, OperationType::RELU);
347 }
348
relu1(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)349 bool relu1(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
350 HexagonModel* model) {
351 return activation(ins, outs, model, 1, OperationType::RELU1);
352 }
353
relu6(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)354 bool relu6(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
355 HexagonModel* model) {
356 return activation(ins, outs, model, 1, OperationType::RELU6);
357 }
358
softmax(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)359 bool softmax(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
360 HexagonModel* model) {
361 return activation(ins, outs, model, 2, OperationType::SOFTMAX);
362 }
363
tanh(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)364 bool tanh(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
365 HexagonModel* model) {
366 return activation(ins, outs, model, 1, OperationType::TANH);
367 }
368
reshape(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)369 bool reshape(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
370 HexagonModel* model) {
371 std::string name = toString(OperationType::RESHAPE);
372 HEXAGON_SOFT_ASSERT_EQ(2, ins.size(), "Need 2 inputs for " << name);
373 HEXAGON_SOFT_ASSERT_EQ(1, outs.size(), "Need 1 output for " << name);
374
375 // get output size
376 const Shape inShape = model->getShape(ins[0]);
377 const Shape targetShape = model->getShape(ins[1]);
378 const int32_t* targetShapePtr = model->getPointer(ins[1]);
379 int32_t targetShapeNumElem = ::android::nn::getNumberOfElements(targetShape);
380 Shape outShape = model->getShape(outs[0]);
381 HEXAGON_SOFT_ASSERT(targetShapePtr != nullptr, "pointer value is currently nullptr");
382
383 HEXAGON_SOFT_ASSERT(reshapePrepare(inShape, targetShapePtr, targetShapeNumElem, &outShape),
384 "Error getting shape");
385 HEXAGON_SOFT_ASSERT(model->setShape(outs[0], outShape), "Error setting shape");
386
387 return true;
388 }
389
resize_bilinear(const std::vector<uint32_t> & ins,const std::vector<uint32_t> & outs,HexagonModel * model)390 bool resize_bilinear(const std::vector<uint32_t>& ins, const std::vector<uint32_t>& outs,
391 HexagonModel* model) {
392 std::string name = toString(OperationType::RESIZE_BILINEAR);
393 HEXAGON_SOFT_ASSERT_EQ(3, ins.size(), "Need 3 inputs for " << name);
394 HEXAGON_SOFT_ASSERT_EQ(1, outs.size(), "Need 1 output for " << name);
395
396 // get parameters
397 const int32_t width = model->getScalar<int32_t>(ins[1]);
398 const int32_t height = model->getScalar<int32_t>(ins[2]);
399
400 // get output size
401 const Shape inShape = model->getShape(ins[0]);
402 Shape outShape = model->getShape(outs[0]);
403 HEXAGON_SOFT_ASSERT(resizeBilinearPrepare(inShape, width, height, &outShape),
404 "Error getting shape");
405 HEXAGON_SOFT_ASSERT(model->setShape(outs[0], outShape), "Error setting shape");
406
407 return true;
408 }
409
410 } // namespace
411
getOperationCheckTable()412 OperationTable& getOperationCheckTable() {
413 static OperationTable table = {
414 // NOTE: the operations that are commented out via inline represent
415 // operations that are valid for the Android O NNAPI release, but are
416 // currently not implemented in HVX.
417
418 // -------------------------- 32-BIT FLOAT ----------------------------
419 // HVX is only performant when running on quantized values. Further, as
420 // an optimization, the current HVX driver will convert some floating
421 // point tensors into quantized values, perform the operation, and then
422 // convert them back to floating point. This results in a loss in
423 // precision causing some tests to fail. For these reasons, the FLOAT32
424 // operations are being temporarily disabled.
425 /*
426 {{OperationType::ADD, OperandType::TENSOR_FLOAT32}, add},
427 {{OperationType::AVERAGE_POOL_2D, OperandType::TENSOR_FLOAT32}, average_pool_2d},
428 {{OperationType::CONCATENATION, OperandType::TENSOR_FLOAT32}, concatenation},
429 {{OperationType::CONV_2D, OperandType::TENSOR_FLOAT32}, conv_2d},
430 {{OperationType::DEPTHWISE_CONV_2D, OperandType::TENSOR_FLOAT32}, depthwise_conv_2d},
431 //{{OperationType::DEPTH_TO_SPACE, OperandType::TENSOR_FLOAT32}, depth_to_space},
432 //{{OperationType::EMBEDDING_LOOKUP, OperandType::TENSOR_FLOAT32}, embedding_lookup},
433 //{{OperationType::FLOOR, OperandType::TENSOR_FLOAT32}, floor},
434 {{OperationType::FULLY_CONNECTED, OperandType::TENSOR_FLOAT32}, fully_connected},
435 //{{OperationType::HASHTABLE_LOOKUP, OperandType::TENSOR_FLOAT32}, hashtable_lookup},
436 //{{OperationType::L2_NORMALIZATION, OperandType::TENSOR_FLOAT32}, l2_normalization},
437 {{OperationType::L2_POOL_2D, OperandType::TENSOR_FLOAT32}, l2_pool_2d},
438 {{OperationType::LOCAL_RESPONSE_NORMALIZATION, OperandType::TENSOR_FLOAT32},
439 local_response_normalization},
440 {{OperationType::LOGISTIC, OperandType::TENSOR_FLOAT32}, logistic},
441 //{{OperationType::LSH_PROJECTION, OperandType::TENSOR_FLOAT32}, lsh_projection},
442 //{{OperationType::LSTM, OperandType::TENSOR_FLOAT32}, lstm },
443 {{OperationType::MAX_POOL_2D, OperandType::TENSOR_FLOAT32}, max_pool_2d},
444 {{OperationType::MUL, OperandType::TENSOR_FLOAT32}, mul},
445 {{OperationType::RELU, OperandType::TENSOR_FLOAT32}, relu},
446 {{OperationType::RELU1, OperandType::TENSOR_FLOAT32}, relu1},
447 {{OperationType::RELU6, OperandType::TENSOR_FLOAT32}, relu6},
448 {{OperationType::RESHAPE, OperandType::TENSOR_FLOAT32}, reshape},
449 {{OperationType::RESIZE_BILINEAR, OperandType::TENSOR_FLOAT32}, resize_bilinear},
450 //{{OperationType::RNN, OperandType::TENSOR_FLOAT32}, rnn},
451 {{OperationType::SOFTMAX, OperandType::TENSOR_FLOAT32}, softmax},
452 //{{OperationType::SPACE_TO_DEPTH, OperandType::TENSOR_FLOAT32}, space_to_depth},
453 //{{OperationType::SVDF, OperandType::TENSOR_FLOAT32}, svdf },
454 {{OperationType::TANH, OperandType::TENSOR_FLOAT32}, tanh},
455 */
456
457 // -------------------- QUANTIZED 8-BIT ASYMMETRICAL ------------------
458 {{OperationType::ADD, OperandType::TENSOR_QUANT8_ASYMM}, add},
459 {{OperationType::AVERAGE_POOL_2D, OperandType::TENSOR_QUANT8_ASYMM}, average_pool_2d},
460 {{OperationType::CONCATENATION, OperandType::TENSOR_QUANT8_ASYMM}, concatenation},
461 {{OperationType::CONV_2D, OperandType::TENSOR_QUANT8_ASYMM}, conv_2d},
462 {{OperationType::DEPTHWISE_CONV_2D, OperandType::TENSOR_QUANT8_ASYMM}, depthwise_conv_2d},
463 //{{OperationType::DEPTH_TO_SPACE, OperandType::TENSOR_QUANT8_ASYMM}, depth_to_space},
464 {{OperationType::DEQUANTIZE, OperandType::TENSOR_QUANT8_ASYMM}, dequantize},
465 //{{OperationType::EMBEDDING_LOOKUP, OperandType::TENSOR_QUANT8_ASYMM}, embedding_lookup},
466 {{OperationType::FULLY_CONNECTED, OperandType::TENSOR_QUANT8_ASYMM}, fully_connected},
467 //{{OperationType::HASHTABLE_LOOKUP, OperandType::TENSOR_QUANT8_ASYMM}, hashtable_lookup},
468 {{OperationType::LOGISTIC, OperandType::TENSOR_QUANT8_ASYMM}, logistic},
469 //{{OperationType::LSH_PROJECTION, OperandType::TENSOR_QUANT8_ASYMM}, lsh_projection},
470 {{OperationType::MAX_POOL_2D, OperandType::TENSOR_QUANT8_ASYMM}, max_pool_2d},
471 {{OperationType::MUL, OperandType::TENSOR_QUANT8_ASYMM}, mul},
472 {{OperationType::RELU, OperandType::TENSOR_QUANT8_ASYMM}, relu},
473 {{OperationType::RELU1, OperandType::TENSOR_QUANT8_ASYMM}, relu1},
474 {{OperationType::RELU6, OperandType::TENSOR_QUANT8_ASYMM}, relu6},
475 {{OperationType::RESHAPE, OperandType::TENSOR_QUANT8_ASYMM}, reshape},
476 {{OperationType::SOFTMAX, OperandType::TENSOR_QUANT8_ASYMM}, softmax},
477 //{{OperationType::SPACE_TO_DEPTH, OperandType::TENSOR_QUANT8_ASYMM}, space_to_depth},
478 };
479
480 // The following functions are normally used by float32, but those
481 // operations have been temporarily disabled. Void explicitly marks them as
482 // unused, and prevents the compiler from throwing an error.
483 (void)l2_pool_2d;
484 (void)local_response_normalization;
485 (void)tanh;
486 (void)resize_bilinear;
487
488 return table;
489 }
490
491 } // namespace hexagon
492 } // namespace implementation
493 } // namespace V1_0
494 } // namespace neuralnetworks
495 } // namespace hardware
496 } // namespace android
497